-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun.py
107 lines (89 loc) · 3.47 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import HCOH
import data.dataloader as dataloader
from data.transform import normalization, encode_onehot
import argparse
import torch
from loguru import logger
def run_hcoh(args):
"""Run HCOH algorithm
Parameters
args: parser
Configuration
Returns
None
"""
# Load dataset
train_data, train_targets, query_data, query_targets, database_data, database_targets = dataloader.load_data(args)
# Preprocess dataset
# Normalization
train_data = normalization(train_data)
query_data = normalization(query_data)
database_data = normalization(database_data)
# One-hot
query_targets = encode_onehot(query_targets, 10)
database_targets = encode_onehot(database_targets, 10)
# Convert to Tensor
train_data = torch.from_numpy(train_data).float().to(args.device)
query_data = torch.from_numpy(query_data).float().to(args.device)
database_data = torch.from_numpy(database_data).float().to(args.device)
train_targets = torch.from_numpy(train_targets).squeeze().to(args.device)
query_targets = torch.from_numpy(query_targets).to(args.device)
database_targets = torch.from_numpy(database_targets).to(args.device)
# HCOH algorithm
for code_length in [8, 16, 32, 64, 128]:
args.code_length = code_length
mAP = 0.0
precision = 0.0
for i in range(10):
m, p = HCOH.hcoh(
train_data,
train_targets,
query_data,
query_targets,
database_data,
database_targets,
args.code_length,
args.lr,
args.num_hadamard,
args.device,
args.topk,
)
mAP += m
precision += p
logger.info('[code_length:{}][map:{:.3f}][precision:{:.3f}]'.format(code_length, mAP / 10, precision / 10))
def load_parse():
"""Load configuration
Parameters
None
Returns
args: parser
Configuration
"""
parser = argparse.ArgumentParser(description='HCOH_PyTorch')
parser.add_argument('--dataset', default='cifar10-vgg', type=str,
help='Dataset used to train (default: cifar10-vgg)')
parser.add_argument('--data-path', type=str,
help='Path of dataset')
parser.add_argument('--num-hadamard', type=int,
help='Number of hadamard codebook columns.')
parser.add_argument('--code-length', default=12, type=int,
help='Binary hash code length (default: 12)')
parser.add_argument('--num-query', default=1000, type=int,
help='Number of query dataset. (default: 1000)')
parser.add_argument('--num-train', default=20000, type=int,
help='Number of training dataset. (default: 20000)')
parser.add_argument('--topk', default=5000, type=int,
help='Compute map of top k (default: 5000)')
parser.add_argument('--lr', default=2e-4, type=float,
help='Learning rate(default: 2e-4)')
parser.add_argument('--gpu', default=-1, type=int,
help='>0, using gpu id; -1, cpu (default: -1)')
return parser.parse_args()
if __name__ == "__main__":
args = load_parse()
logger.add('logs/file_{time}.log')
if args.gpu == -1:
args.device = torch.device("cpu")
else:
args.device = torch.device("cuda:%d" % args.gpu)
run_hcoh(args)