-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathrun.py
121 lines (104 loc) · 3.43 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import torch
import os
import numpy as np
import random
import argparse
import dhn
from loguru import logger
from data.data_loader import load_data
def run():
# Load config
args = load_config()
logger.add('logs/{}_model_{}_code_{}_lamda_{}.log'.format(
args.dataset,
args.arch,
args.code_length,
args.lamda,
),
rotation='500 MB',
level='INFO',
)
logger.info(args)
# Set seed
torch.backends.cudnn.benchmark = True
random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
np.random.seed(args.seed)
# Load dataset
train_dataloader, query_dataloader, retrieval_dataloader = load_data(
args.dataset,
args.root,
args.batch_size,
args.num_workers,
)
# Training
checkpoint = dhn.train(
train_dataloader,
query_dataloader,
retrieval_dataloader,
args.arch,
args.code_length,
args.device,
args.lr,
args.max_iter,
args.lamda,
args.topk,
args.evaluate_interval,
)
logger.info('[code_length:{}][map:{:.4f}]'.format(args.code_length, checkpoint['map']))
# Save checkpoint
torch.save(
checkpoint,
os.path.join('checkpoints', '{}_model_{}_code_{}_lamda_{}_map_{:.4f}.pt'.format(
args.dataset,
args.arch,
args.code_length,
args.lamda,
checkpoint['map']),
)
)
def load_config():
"""
Load configuration.
Args
None
Returns
args(argparse.ArgumentParser): Configuration.
"""
parser = argparse.ArgumentParser(description='DHN_PyTorch')
parser.add_argument('--dataset',
help='Dataset name.')
parser.add_argument('--root',
help='Path of dataset')
parser.add_argument('--code-length', type=int,
help='Binary hash code length.')
parser.add_argument('--arch', default='alexnet', type=str,
help='CNN model name.(default: alexnet)')
parser.add_argument('--batch-size', default=256, type=int,
help='Batch size.(default: 256)')
parser.add_argument('--lr', default=1e-5, type=float,
help='Learning rate.(default: 1e-5)')
parser.add_argument('--max-iter', default=500, type=int,
help='Number of iterations.(default: 500)')
parser.add_argument('--num-workers', default=6, type=int,
help='Number of loading data threads.(default: 6)')
parser.add_argument('--topk', default=-1, type=int,
help='Calculate map of top k.(default: all)')
parser.add_argument('--gpu', default=None, type=int,
help='Using gpu.(default: False)')
parser.add_argument('--lamda', default=1, type=float,
help='Hyper-parameter.(default: 1)')
parser.add_argument('--seed', default=3367, type=int,
help='Random seed.(default: 3367)')
parser.add_argument('--evaluate-interval', default=10, type=int,
help='Evaluation interval.(default: 10)')
args = parser.parse_args()
# GPU
if args.gpu is None:
args.device = torch.device("cpu")
else:
args.device = torch.device("cuda:%d" % args.gpu)
return args
if __name__ == '__main__':
run()