-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdhn.py
185 lines (154 loc) · 5.13 KB
/
dhn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import time
import torch
import torch.nn as nn
import torch.optim as optim
from models.model_loader import load_model
from torch.optim.lr_scheduler import CosineAnnealingLR
from utils.evaluate import mean_average_precision, pr_curve
from loguru import logger
def train(
train_dataloader,
query_dataloader,
retrieval_dataloader,
arch,
code_length,
device,
lr,
max_iter,
lamda,
topk,
evaluate_interval,
):
"""
Training model.
Args
train_dataloader, query_dataloader, retrieval_dataloader(torch.utils.data.dataloader.DataLoader): Data loader.
arch(str): CNN model name.
code_length(int): Hash code length.
device(torch.device): GPU or CPU.
lr(float): Learning rate.
max_iter(int): Number of iterations.
lamda(float): Hyper-parameters.
topk(int): Compute top k map.
evaluate_interval(int): Interval of evaluation.
Returns
checkpoint(dict): Checkpoint.
"""
# Load model
model = load_model(arch, code_length).to(device)
# Create criterion, optimizer, scheduler
criterion = DHNLoss(lamda)
optimizer = optim.RMSprop(
model.parameters(),
lr=lr,
weight_decay=5e-4,
)
scheduler = CosineAnnealingLR(
optimizer,
max_iter,
lr/100,
)
# Initialization
running_loss = 0.
best_map = 0.
training_time = 0.
# Training
for it in range(max_iter):
tic = time.time()
for data, targets, index in train_dataloader:
data, targets, index = data.to(device), targets.to(device), index.to(device)
optimizer.zero_grad()
# Create similarity matrix
S = (targets @ targets.t() > 0).float()
outputs = model(data)
loss = criterion(outputs, S)
running_loss += loss.item()
loss.backward()
optimizer.step()
scheduler.step()
training_time += time.time() - tic
# Evaluate
if it % evaluate_interval == evaluate_interval - 1:
# Generate hash code
query_code = generate_code(model, query_dataloader, code_length, device)
retrieval_code = generate_code(model, retrieval_dataloader, code_length, device)
query_targets = query_dataloader.dataset.get_onehot_targets()
retrieval_targets = retrieval_dataloader.dataset.get_onehot_targets()
# Compute map
mAP = mean_average_precision(
query_code.to(device),
retrieval_code.to(device),
query_targets.to(device),
retrieval_targets.to(device),
device,
topk,
)
# Compute PR curve
P, R = pr_curve(
query_code.to(device),
retrieval_code.to(device),
query_targets.to(device),
retrieval_targets.to(device),
device,
)
# Log
logger.info('[iter:{}/{}][loss:{:.2f}][map:{:.4f}][time:{:.2f}]'.format(
it+1,
max_iter,
running_loss / evaluate_interval,
mAP,
training_time,
))
running_loss = 0.
# Checkpoint
if best_map < mAP:
best_map = mAP
checkpoint = {
'model': model.state_dict(),
'qB': query_code.cpu(),
'rB': retrieval_code.cpu(),
'qL': query_targets.cpu(),
'rL': retrieval_targets.cpu(),
'P': P,
'R': R,
'map': best_map,
}
return checkpoint
def generate_code(model, dataloader, code_length, device):
"""
Generate hash code
Args
dataloader(torch.utils.data.dataloader.DataLoader): Data loader.
code_length(int): Hash code length.
device(torch.device): Using gpu or cpu.
Returns
code(torch.Tensor): Hash code.
"""
model.eval()
with torch.no_grad():
N = len(dataloader.dataset)
code = torch.zeros([N, code_length])
for data, _, index in dataloader:
data = data.to(device)
hash_code = model(data)
code[index, :] = hash_code.sign().cpu()
model.train()
return code
class DHNLoss(nn.Module):
"""
DHN loss function.
"""
def __init__(self, lamda):
super(DHNLoss, self).__init__()
self.lamda = lamda
def forward(self, H, S):
# Inner product
theta = H @ H.t() / 2
# log(1+e^z) may be overflow when z is large.
# We convert log(1+e^z) to log(1 + e^(-z)) + z.
metric_loss = (torch.log(1 + torch.exp(-(self.lamda * theta).abs())) + theta.clamp(min=0) - self.lamda * S * theta).mean()
quantization_loss = self.logcosh(H.abs() - 1).mean()
loss = metric_loss + self.lamda * quantization_loss
return loss
def logcosh(self, x):
return torch.log(torch.cosh(x))