-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathpredict_imagenet_label.py
116 lines (99 loc) · 4.89 KB
/
predict_imagenet_label.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
#!/usr/bin/env python3
"""PyTorch Inference Script
An example inference script that outputs top-k class ids for images in a folder into a csv.
Hacked together by / Copyright 2020 Ross Wightman (https://github.com/rwightman)
"""
import argparse
import logging
import numpy as np
import os
import time
import torch
from timm.data import ImageDataset, create_loader, resolve_data_config
from timm.models import apply_test_time_pool, create_model
from timm.utils import AverageMeter, setup_default_logging
torch.backends.cudnn.benchmark = True
_logger = logging.getLogger('inference')
parser = argparse.ArgumentParser(description='PyTorch ImageNet Inference')
parser.add_argument('data', metavar='DIR', help='path to dataset')
parser.add_argument('--output_dir', metavar='DIR', default='./', help='path to output files')
parser.add_argument('--model', '-m', metavar='MODEL', default='dpn92', help='model architecture (default: dpn92)')
parser.add_argument(
'-j', '--workers', default=2, type=int, metavar='N', help='number of data loading workers (default: 2)')
parser.add_argument('-b', '--batch-size', default=256, type=int, metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('--img-size', default=None, type=int, metavar='N', help='Input image dimension')
parser.add_argument(
'--input-size',
default=None,
nargs=3,
type=int,
metavar='N N N',
help='Input all image dimensions (d h w, e.g. --input-size 3 224 224), uses model default if empty')
parser.add_argument(
'--mean', type=float, nargs='+', default=None, metavar='MEAN', help='Override mean pixel value of dataset')
parser.add_argument(
'--std', type=float, nargs='+', default=None, metavar='STD', help='Override std deviation of of dataset')
parser.add_argument(
'--interpolation', default='', type=str, metavar='NAME', help='Image resize interpolation type (overrides model)')
parser.add_argument('--num-classes', type=int, default=1000, help='Number classes in dataset')
parser.add_argument('--log-freq', default=10, type=int, metavar='N', help='batch logging frequency (default: 10)')
parser.add_argument(
'--checkpoint', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)')
parser.add_argument('--pretrained', dest='pretrained', action='store_true', help='use pre-trained model')
parser.add_argument('--num-gpu', type=int, default=1, help='Number of GPUS to use')
parser.add_argument('--no-test-pool', dest='no_test_pool', action='store_true', help='disable test time pool')
parser.add_argument('--topk', default=5, type=int, metavar='N', help='Top-k to output to CSV')
parser.add_argument('--output', type=str, default='assets/predicted_label_for_user_image.txt')
def main():
setup_default_logging()
args = parser.parse_args()
# might as well try to do something useful...
args.pretrained = args.pretrained or not args.checkpoint
# create model
model = create_model(
args.model,
num_classes=args.num_classes,
in_chans=3,
pretrained=args.pretrained,
checkpoint_path=args.checkpoint)
_logger.info('Model %s created, param count: %d' % (args.model, sum([m.numel() for m in model.parameters()])))
config = resolve_data_config(vars(args), model=model)
model, test_time_pool = (model, False) if args.no_test_pool else apply_test_time_pool(model, config)
if args.num_gpu > 1:
model = torch.nn.DataParallel(model, device_ids=list(range(args.num_gpu))).cuda()
else:
model = model.cuda()
loader = create_loader(
ImageDataset(args.data),
input_size=config['input_size'],
batch_size=args.batch_size,
use_prefetcher=True,
interpolation=config['interpolation'],
mean=config['mean'],
std=config['std'],
num_workers=args.workers,
crop_pct=1.0 if test_time_pool else config['crop_pct'])
model.eval()
k = min(args.topk, args.num_classes)
batch_time = AverageMeter()
end = time.time()
topk_ids = []
with torch.no_grad():
for batch_idx, (input, _) in enumerate(loader):
input = input.cuda()
labels = model(input)
topk = labels.topk(k)[1]
topk_ids.append(topk.cpu().numpy())
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if batch_idx % args.log_freq == 0:
_logger.info('Predict: [{0}/{1}] Time {batch_time.val:.3f} ({batch_time.avg:.3f})'.format(
batch_idx, len(loader), batch_time=batch_time))
topk_ids = np.concatenate(topk_ids, axis=0)
with open(os.path.join(args.output_dir, args.output), 'w') as out_file:
filenames = loader.dataset.filenames(basename=True)
for filename, label in zip(filenames, topk_ids):
out_file.write('{0} placeholder {1}\n'.format(os.path.splitext(filename)[0], label[0]))
if __name__ == '__main__':
main()