-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtop_down_video_demo_full_frame_without_det.py
138 lines (115 loc) · 4.16 KB
/
top_down_video_demo_full_frame_without_det.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# Copyright (c) OpenMMLab. All rights reserved.
import os
import warnings
from argparse import ArgumentParser
import cv2
import mmcv
import numpy as np
from mmpose.apis import (inference_top_down_pose_model, init_pose_model,
vis_pose_result)
from mmpose.datasets import DatasetInfo
def main():
"""Visualize the demo images.
Using mmdet to detect the human.
"""
parser = ArgumentParser()
parser.add_argument('pose_config', help='Config file for pose')
parser.add_argument('pose_checkpoint', help='Checkpoint file for pose')
parser.add_argument('--video-path', type=str, help='Video path')
parser.add_argument(
'--show',
action='store_true',
default=False,
help='whether to show visualizations.')
parser.add_argument(
'--out-video-root',
default='',
help='Root of the output video file. '
'Default not saving the visualization video.')
parser.add_argument(
'--device', default='cuda:0', help='Device used for inference')
parser.add_argument(
'--kpt-thr', type=float, default=0.3, help='Keypoint score threshold')
parser.add_argument(
'--radius',
type=int,
default=4,
help='Keypoint radius for visualization')
parser.add_argument(
'--thickness',
type=int,
default=1,
help='Link thickness for visualization')
args = parser.parse_args()
assert args.show or (args.out_video_root != '')
print('Initializing model...')
# build the pose model from a config file and a checkpoint file
pose_model = init_pose_model(
args.pose_config, args.pose_checkpoint, device=args.device.lower())
dataset = pose_model.cfg.data['test']['type']
dataset_info = pose_model.cfg.data['test'].get('dataset_info', None)
if dataset_info is None:
warnings.warn(
'Please set `dataset_info` in the config.'
'Check https://github.com/open-mmlab/mmpose/pull/663 for details.',
DeprecationWarning)
else:
dataset_info = DatasetInfo(dataset_info)
# read video
video = mmcv.VideoReader(args.video_path)
assert video.opened, f'Faild to load video file {args.video_path}'
fps = video.fps
size = (video.width, video.height)
if args.out_video_root == '':
save_out_video = False
else:
os.makedirs(args.out_video_root, exist_ok=True)
save_out_video = True
if save_out_video:
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
videoWriter = cv2.VideoWriter(
os.path.join(args.out_video_root,
f'vis_{os.path.basename(args.video_path)}'), fourcc,
fps, size)
# whether to return heatmap, optional
return_heatmap = False
# return the output of some desired layers,
# e.g. use ('backbone', ) to return backbone feature
output_layer_names = None
print('Running inference...')
for frame_id, cur_frame in enumerate(mmcv.track_iter_progress(video)):
# keep the person class bounding boxes.
person_results = [{'bbox': np.array([0, 0, size[0], size[1]])}]
# test a single image, with a list of bboxes.
pose_results, returned_outputs = inference_top_down_pose_model(
pose_model,
cur_frame,
person_results,
format='xyxy',
dataset=dataset,
dataset_info=dataset_info,
return_heatmap=return_heatmap,
outputs=output_layer_names)
# show the results
vis_frame = vis_pose_result(
pose_model,
cur_frame,
pose_results,
radius=args.radius,
thickness=args.thickness,
dataset=dataset,
dataset_info=dataset_info,
kpt_score_thr=args.kpt_thr,
show=False)
if args.show:
cv2.imshow('Frame', vis_frame)
if save_out_video:
videoWriter.write(vis_frame)
if args.show and cv2.waitKey(1) & 0xFF == ord('q'):
break
if save_out_video:
videoWriter.release()
if args.show:
cv2.destroyAllWindows()
if __name__ == '__main__':
main()