-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtop_down_img_demo.py
129 lines (110 loc) · 3.97 KB
/
top_down_img_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# Copyright (c) OpenMMLab. All rights reserved.
import os
import warnings
from argparse import ArgumentParser
from xtcocotools.coco import COCO
from mmpose.apis import (inference_top_down_pose_model, init_pose_model,
vis_pose_result)
from mmpose.datasets import DatasetInfo
def main():
"""Visualize the demo images.
Require the json_file containing boxes. 用可视化regression mpii的结果,要coco格式的mpii json文件
"""
parser = ArgumentParser()
parser.add_argument('pose_config', help='Config file for detection')
parser.add_argument('pose_checkpoint', help='Checkpoint file')
parser.add_argument('--img-root', type=str, default='', help='Image root')
parser.add_argument(
'--json-file',
type=str,
default='',
help='Json file containing image info.')
parser.add_argument(
'--show',
action='store_true',
default=False,
help='whether to show img')
parser.add_argument(
'--out-img-root',
type=str,
default='',
help='Root of the output img file. '
'Default not saving the visualization images.')
parser.add_argument(
'--device', default='cuda:0', help='Device used for inference')
parser.add_argument(
'--kpt-thr', type=float, default=0.3, help='Keypoint score threshold')
parser.add_argument(
'--radius',
type=int,
default=4,
help='Keypoint radius for visualization')
parser.add_argument(
'--thickness',
type=int,
default=1,
help='Link thickness for visualization')
args = parser.parse_args()
assert args.show or (args.out_img_root != '')
coco = COCO(args.json_file)
# build the pose model from a config file and a checkpoint file
pose_model = init_pose_model(
args.pose_config, args.pose_checkpoint, device=args.device.lower())
dataset = pose_model.cfg.data['test']['type']
dataset_info = pose_model.cfg.data['test'].get('dataset_info', None)
if dataset_info is None:
warnings.warn(
'Please set `dataset_info` in the config.'
'Check https://github.com/open-mmlab/mmpose/pull/663 for details.',
DeprecationWarning)
else:
dataset_info = DatasetInfo(dataset_info)
img_keys = list(coco.imgs.keys())
# optional
return_heatmap = False
# e.g. use ('backbone', ) to return backbone feature
output_layer_names = None
# process each image
for i in range(len(img_keys)):
# get bounding box annotations
image_id = img_keys[i]
image = coco.loadImgs(image_id)[0]
image_name = os.path.join(args.img_root, image['file_name'])
ann_ids = coco.getAnnIds(image_id)
# make person bounding boxes
person_results = []
for ann_id in ann_ids:
person = {}
ann = coco.anns[ann_id]
# bbox format is 'xywh'
person['bbox'] = ann['bbox']
person_results.append(person)
# test a single image, with a list of bboxes
pose_results, returned_outputs = inference_top_down_pose_model(
pose_model,
image_name,
person_results,
bbox_thr=None,
format='xywh',
dataset=dataset,
dataset_info=dataset_info,
return_heatmap=return_heatmap,
outputs=output_layer_names)
if args.out_img_root == '':
out_file = None
else:
os.makedirs(args.out_img_root, exist_ok=True)
out_file = os.path.join(args.out_img_root, f'vis_{i}.jpg')
vis_pose_result(
pose_model,
image_name,
pose_results,
dataset=dataset,
dataset_info=dataset_info,
kpt_score_thr=args.kpt_thr,
radius=args.radius,
thickness=args.thickness,
show=args.show,
out_file=out_file)
if __name__ == '__main__':
main()