-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy patharguments.py
24 lines (19 loc) · 1.37 KB
/
arguments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
import argparse
import torch
# define some arguments that will be used...
def achieve_args():
parse = argparse.ArgumentParser()
parse.add_argument('--seed', type=int, default=123, help='the random seed')
parse.add_argument('--policy_lr', type=float, default=3e-4, help='the learning rate of actor network')
parse.add_argument('--value_lr', type=float, default=3e-4, help='the learning rate of critic network')
parse.add_argument('--batch_size', type=int, default=1, help='the batch size of the training')
parse.add_argument('--gamma', type=float, default=0.99, help='the discount ratio...')
parse.add_argument('--policy_update_step', type=int, default=10, help='the update number of actor network')
parse.add_argument('--value_update_step', type=int, default=10, help='the update number of critic network')
parse.add_argument('--epsilon', type=float, default=0.2, help='the clipped ratio...')
parse.add_argument('--tau', type=float, default=0.95, help='the coefficient for calculate GAE')
parse.add_argument('--max_episode_length', type=int, default=100, metavar='LENGTH', help='Maximum episode length')
parse.add_argument('--env_name', default='Walker2d-v1', help='environments name')
parse.add_argument('--collection_length', type=int, default=8, help='the sample collection length(episodes)')
args = parse.parse_args()
return args