-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
191 lines (164 loc) · 7.66 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import torch
from barlowTwins import BarlowTwins
from utils import adjust_learning_rate, LARS
from pathlib import Path
import argparse
import json
import sys
import os
import signal
import subprocess
import time
from torch import nn
from torch.utils.data import DataLoader
from tqdm import tqdm
from dataload import MaskedFaceDatasetTraining, MaskedFaceDatasetNewSampler
parser = argparse.ArgumentParser(description='Barlow Twins Training')
parser.add_argument('--workers', default=8, type=int, metavar='N',
help='number of data loader workers')
parser.add_argument('--epochs', default=1000, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--batch-size', default=256, type=int, metavar='N',
help='mini-batch size')
parser.add_argument('--learning-rate-weights', default=0.2, type=float, metavar='LR',
help='base learning rate for weights')
parser.add_argument('--learning-rate-biases', default=0.0048, type=float, metavar='LR',
help='base learning rate for biases and batch norm parameters')
parser.add_argument('--weight-decay', default=1e-6, type=float, metavar='W',
help='weight decay')
parser.add_argument('--lambd', default=0.0051, type=float, metavar='L',
help='weight on off-diagonal terms')
parser.add_argument('--projector', default='2048-4096-8192', type=str)
#metavar='MLP', help='projector MLP')
parser.add_argument('--print-freq', default=100, type=int, metavar='N',
help='print frequency')
parser.add_argument('--checkpoint-dir', default='./checkpoint/', type=Path,
metavar='DIR', help='path to checkpoint directory')
parser.add_argument('--backbone_lr', default=0, type=float,
help='Learning rate used for fine tuning the backbone, disabled by default')
parser.add_argument('--dataset', default='standard', type=str, choices=['standard', 'new_sampler']
help='Type of dataset to use')
def main():
args = parser.parse_args()
args.ngpus_per_node = torch.cuda.device_count()
def handle_sigusr1(signum, frame):
os.system(f'scontrol requeue {os.getenv("SLURM_JOB_ID")}')
exit()
signal.signal(signal.SIGUSR1, handle_sigusr1)
cmd = 'scontrol show hostnames ' + os.getenv('SLURM_JOB_NODELIST')
stdout = subprocess.check_output(cmd.split())
host_name = stdout.decode().splitlines()[0]
args.rank = int(os.getenv('SLURM_NODEID')) * args.ngpus_per_node
args.world_size = int(os.getenv('SLURM_NNODES')) * args.ngpus_per_node
args.dist_url = f'env://'
torch.multiprocessing.spawn(main_worker, (args,), args.ngpus_per_node)
def main_worker(gpu, args):
args.rank += gpu
print(args.rank)
torch.distributed.init_process_group(
backend='nccl', init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
if args.rank == 0:
args.checkpoint_dir.mkdir(parents=True, exist_ok=True)
stats_file = open(args.checkpoint_dir / 'stats.txt', 'a', buffering=1)
print(' '.join(sys.argv))
print(' '.join(sys.argv), file=stats_file)
torch.cuda.set_device(gpu)
torch.backends.cudnn.benchmark = True
path = './dataset/'
train_path = path + 'train/'
val_path = path + 'val/'
if args.dataset == 'new_sampler':
train_set = MaskedFaceDatasetNewSampler(train_path)
val_set = MaskedFaceDatasetNewSampler(val_path)
else:
train_set = MaskedFaceDatasetTraining(train_path)
val_set = MaskedFaceDatasetTraining(val_path)
model = BarlowTwins(args).cuda(gpu)
model = nn.SyncBatchNorm.convert_sync_batchnorm(model)
param_weights = []
param_biases = []
for param in model.parameters():
if param.ndim == 1:
param_biases.append(param)
else:
param_weights.append(param)
parameters = [{'params': param_weights}, {'params': param_biases}]
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[gpu])
optimizer = LARS(parameters, lr=0, weight_decay=args.weight_decay,
weight_decay_filter=True,
lars_adaptation_filter=True)
# automatically resume from checkpoint if it exists
if (args.checkpoint_dir / 'checkpoint.pth').is_file():
ckpt = torch.load(args.checkpoint_dir / 'checkpoint.pth',
map_location='cpu')
start_epoch = ckpt['epoch']
model.load_state_dict(ckpt['model'])
optimizer.load_state_dict(ckpt['optimizer'])
else:
start_epoch = 0
sampler_train = torch.utils.data.distributed.DistributedSampler(train_set)
sampler_val = torch.utils.data.distributed.DistributedSampler(val_set)
assert args.batch_size % args.world_size == 0
per_device_batch_size = args.batch_size // args.world_size
loader_train = DataLoader(train_set, batch_size=per_device_batch_size,
pin_memory=True,
num_workers=args.workers,
sampler=sampler_train
)
loader_val = DataLoader(val_set, batch_size=per_device_batch_size,
num_workers=args.workers,
sampler=sampler_val
)
start_time = time.time()
min_loss = float('inf')
scaler = torch.cuda.amp.GradScaler()
for epoch in range(start_epoch, args.epochs):
sampler_train.set_epoch(epoch)
sampler_val.set_epoch(epoch)
if isinstance(train_set, MaskedFaceDatasetNewSampler):
train_set.empty_dict()
data_bar = tqdm(loader_train, desc=f"Train Epoch {epoch}")
for step, (y1, y2) in enumerate(data_bar, start=epoch * len(loader_train)):
y1 = y1.cuda(gpu, non_blocking=True)
y2 = y2.cuda(gpu, non_blocking=True)
adjust_learning_rate(args, optimizer, loader_train, step)
optimizer.zero_grad()
with torch.cuda.amp.autocast():
loss = model.forward(y1, y2)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
# compute val loss
val_loss = torch.zeros(1, device=gpu)
val_bar = tqdm(loader_val)
for step, (val1, val2) in enumerate(val_bar):
val1 = val1.cuda(gpu, non_blocking=True)
val2 = val2.cuda(gpu, non_blocking=True)
with torch.cuda.amp.autocast():
with torch.no_grad():
val_loss += model.forward(val1, val2)
val_loss /= len(loader_val)
torch.distributed.all_reduce(val_loss)
val_loss /= args.world_size
# print stats
if args.rank == 0:
stats = dict(epoch=epoch, step=step,
lr_weights=optimizer.param_groups[0]['lr'],
lr_biases=optimizer.param_groups[1]['lr'],
loss=loss.item(),
val_loss=val_loss.item(),
time=int(time.time() - start_time))
print(json.dumps(stats))
print(json.dumps(stats), file=stats_file)
if args.rank == 0:
# save checkpoint
state = dict(epoch=epoch + 1, model=model.state_dict(),
optimizer=optimizer.state_dict())
torch.save(state, args.checkpoint_dir / 'checkpoint.pth')
# save best
if val_loss < min_loss:
min_loss = val_loss
torch.save(state, args.checkpoint_dir / 'best_checkpoint.pth')
if __name__ == '__main__':
main()