-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtoy_vit_cifar100.py
142 lines (121 loc) · 3.9 KB
/
toy_vit_cifar100.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
from datasets import load_dataset
import lightning as L
from transformers.models.vit.configuration_vit import ViTConfig
from transformers.models.vit.modeling_vit import ViTModel, ViTForImageClassification
from quant_linear import (
create_quantized_copy_of_model,
QuantizationMode,
)
import torch
from torchvision import transforms
from torch.utils.data import DataLoader
config = ViTConfig(
hidden_size=128,
num_hidden_layers=8,
num_attention_heads=4,
intermediate_size=256,
hidden_act="gelu",
image_size=32,
patch_size=4,
num_labels=100,
num_channels=3,
)
class ViTImageClassifier(L.LightningModule):
def __init__(self, config: ViTConfig, lr=1e-3):
super().__init__()
self.model = ViTForImageClassification(config)
self.config = config
self.lr = lr
def forward(self, batch):
return self.model(**batch)
def training_step(self, batch, batch_idx):
output = self(batch)
loss = output.loss
argmax = output.logits.argmax(dim=1)
accuracy = (argmax == batch["labels"]).float().mean()
self.log_dict(
{
"tl": loss.item(),
"ta": accuracy.item(),
},
prog_bar=True,
on_step=True,
on_epoch=True,
)
return loss
def validation_step(self, batch, batch_idx):
with torch.no_grad():
output = self(batch)
loss = output.loss
argmax = output.logits.argmax(dim=1)
accuracy = (argmax == batch["labels"]).float().mean()
self.log_dict(
{
"vl": loss.item(),
"va": accuracy.item(),
},
prog_bar=True,
on_step=True,
on_epoch=True,
)
return loss
def configure_optimizers(self):
return torch.optim.Adam(self.model.parameters(), lr=self.lr)
dataset = load_dataset("cifar100")
image_transforms = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize((0.5), (0.5)),
]
)
processed_dataset = dataset.map(
lambda x: {"pixel_values": image_transforms(x["img"]), "labels": x["fine_label"]}
)
processed_dataset = processed_dataset.remove_columns(["fine_label", "img"])
processed_dataset.set_format("torch", columns=["pixel_values", "labels"])
train_dataloader = DataLoader(processed_dataset["train"], batch_size=128)
eval_dataloader = DataLoader(processed_dataset["test"], batch_size=128)
normal_model = ViTImageClassifier(config)
one_bit_quantized_model = create_quantized_copy_of_model(
normal_model, quantization_mode=QuantizationMode.one_bit
)
two_bit_quantized_model = create_quantized_copy_of_model(
normal_model, quantization_mode=QuantizationMode.two_bit
)
from lightning.pytorch.loggers import WandbLogger
choice = input("Enter 1,2,3:")
if int(choice) == 1:
normal_logger = WandbLogger(project="BitNet_v2", name="normal_cifar100")
normal_trainer = L.Trainer(
max_epochs=10,
logger=normal_logger,
)
normal_trainer.fit(
normal_model,
train_dataloaders=train_dataloader,
val_dataloaders=eval_dataloader,
)
if int(choice) == 2:
one_bit_logger = WandbLogger(project="BitNet_v2", name="one_bit_cifar100")
one_bit_trainer = L.Trainer(
max_epochs=10,
logger=one_bit_logger,
)
one_bit_quantized_model.lr = 1e-4
one_bit_trainer.fit(
one_bit_quantized_model,
train_dataloaders=train_dataloader,
val_dataloaders=eval_dataloader,
)
if int(choice) == 3:
two_bit_logger = WandbLogger(project="BitNet_v2", name="two_bit_cifar100")
two_bit_trainer = L.Trainer(
max_epochs=10,
logger=two_bit_logger,
)
two_bit_quantized_model.lr = 1e-4
two_bit_trainer.fit(
two_bit_quantized_model,
train_dataloaders=train_dataloader,
val_dataloaders=eval_dataloader,
)