Skip to content

Latest commit

 

History

History
203 lines (176 loc) · 13.5 KB

README.md

File metadata and controls

203 lines (176 loc) · 13.5 KB

Teradata Python package for running Spark workloads on Vantage.

teradatamlspk is a Python module to run PySpark workloads on Vantage with minimal changes to the Python script.

For community support, please visit the Teradata Community.

For Teradata customer support, please visit Teradata Support.

Copyright 2024, Teradata. All Rights Reserved.

Table of Contents

Release Notes:

teradatamlspk 20.00.00.02

  • New Features/Functionality
    • teradatamlspk DataFrameReader
      • table() - Returns the specified table as a DataFrame.
    • teradatamlspk DataFrameWriterV2
      • partitionedBy - Partition the output table created by create, createOrReplace, or replace using the given columns or transforms.
      • option - Add an output option while writing a DataFrame to a data source.
      • options - Adds output options while writing a DataFrame to a data source.
    • teradatamlspk global functions
      • years - Partition transform function: A transform for timestamps and dates to partition data into years.
      • days - Partition transform function: A transform for timestamps and dates to partition data into days.
      • months - Partition transform function: A transform for timestamps and dates to partition data into months.
      • hours - Partition transform function: A transform for timestamps and dates to partition data into hours.
      • udf - Creates a user defined function (UDF).
      • conv - Convert a number in a string column from one base to another.
      • log - Returns the first argument-based logarithm of the second argument.
      • log2 - Returns the base-2 logarithm of the argument.
      • date_from_unix_date - Create date from the number of days since 1970-01-01.
      • extract - Extracts a part of the date/timestamp or interval source.
      • datepart - Extracts a part of the date/timestamp or interval source.
      • date_part - Extracts a part of the date/timestamp or interval source.
      • make_dt_interval - Make DayTimeIntervalType duration from days, hours, mins and secs.
      • make_timestamp - Create timestamp from years, months, days, hours, mins, secs and timezone fields.
      • make_timestamp_ltz - Create the current timestamp with local time zone from years, months, days, hours, mins, secs and timezone fields.
      • make_timestamp_ntz - Create local date-time from years, months, days, hours, mins, secs fields
      • make_ym_interval - Make year-month interval from years, months.
      • make_date - Returns a column with a date built from the year, month and day columns.
      • from_unixtime - Converts the number of seconds from unix epoch (1970-01-01 00:00:00 UTC) to a string representing the timestamp.
      • unix_timestamp - Convert time string with given pattern to unix epoch.
      • to_unix_timestamp - Convert time string with given pattern to unix epoch.
      • to_timestamp - Converts a string column to timestamp.
      • to_timestamp_ltz - Converts a string column to timestamp.
      • to_timestamp_ntz - Converts a string column to timestamp.
      • from_utc_timestamp - Converts column to utc timestamp from different timezone columns.
      • to_utc_timestamp - Converts column to given timestamp from utc timezone columns.
      • timestamp_micros - Creates timestamp from the number of microseconds since UTC epoch.
      • timestamp_millis - Creates timestamp from the number of milliseconds since UTC epoch.
      • timestamp_seconds - Converts the number of seconds from the Unix epoch to a timestamp
      • unix_micros - Returns the number of microseconds since 1970-01-01 00:00:00 UTC.
      • unix_millis - Returns the number of milliseconds since 1970-01-01 00:00:00 UTC.
      • unix_seconds - Returns the number of seconds since 1970-01-01 00:00:00 UTC.
      • base64 - Computes the BASE64 encoding of a binary column and returns it as a string column.
      • current_timezone - Returns the current session local timezone.
      • format_string - Formats the arguments in printf-style and returns the result as a string column.
      • elt - Returns the n-th input, e.g., returns input2 when n is 2. The function returns NULL if the index exceeds the length of the array.
      • to_varchar - Convert col to a string based on the format.
      • current_catalog - Returns the current catalog.
      • equal_null - Returns same result as the EQUAL(=) operator for non-null operands, but returns true if both are null, false if one of the them is null.
      • version - Returns the teradatamlspk version.
      • parse_url - Extracts a part from a URL.
      • reverse - Returns a reversed string with reverse order of elements.
      • convert_timezone - Converts the timestamp without time zone sourceTs from the sourceTz time zone to targetTz.
      • call_udf - Register a user defined function (UDF).
    • teradatamlspk UDFRegistration
      • register() - Call a registered user defined function (UDF).
    • teradatamlspk DataFrameColumn a.k.a. ColumnExpression
      • eqNullSafe() - Equality test that is safe for null values.
    • teradatamlspk MLlib Functions
      • RegexTokenizer() - Extracts tokens based on the pattern.
    • pyspark2teradataml
      • pyspark2teradataml utility accepts directory containing Pyspark scripts as input.
      • pyspark2teradataml utility accepts Pyspark notebook as input.
  • Updates
    • spark.conf.set - Supports set time zone to session.
    • spark.conf.unset - Supports unset time zone to previous time zone set by user.
    • DataFrame.select(), DataFrame.withColumn(), DataFrame.withColumns() function now accept functions like, ilike, isNull,isNotNull, contains, startswith, endswith, booleanexpressions, binaryexpressions without when clause.
    • DataFrameColumn.cast() and DataFrameColumn.astype() function supports TimestampNTZType, DayTimeIntervalType, YearMonthIntervalType.
    • DataFrame.createTempView() and DataFrame.createOrReplaceTempView() now drops view at the end of session.
    • DataFrame.agg() and GroupedData.agg() function supports aggregate functions generated using arthimetic operators.
  • Bug Fixes
    • DataFrame.withColumnRenamed() and DataFrame.withColumnsRenamed() will work if columns are renamed with same name of a column that is already present irrespective of case.
    • DataFrame.join() now works smiliar to pyspark if column name or list of column names are passed to on clause.

teradatamlspk 20.00.00.01

  • New Features/Functionality
    • teradatamlspk DataFrame
      • write() - Supports writing the DataFrame to local file system or to Vantage or to cloud storage.
      • writeTo() - Supports writing the DataFrame to a Vantage table.
      • rdd - Returns the same DataFrame.
    • teradatamlspk DataFrameColumn a.k.a. ColumnExpression
      • desc_nulls_first() - Returns a sort expression based on the descending order of the given column name, and null values appear before non-null values.
      • desc_nulls_last() - Returns a sort expression based on the descending order of the given column name, and null values appear after non-null values.
      • asc_nulls_first() - Returns a sort expression based on the ascending order of the given column name, and null values appear before non-null values.
      • asc_nulls_last() - Returns a sort expression based on the ascending order of the given column name, and null values appear after non-null values.
  • Updates
    • DataFrame.fillna() and DataFrame.na.fill() now supports input arguments of the same data type or their types must be compatible.
    • DataFrame.agg() and GroupedData.agg() function supports Column as input and '*' for 'count'.
    • DataFrameColumn.cast() and DataFrameColumn.astype() now accepts string literal which are case insensitive.
    • Optimised performance for DataFrame.show()
    • Classification Summary, TrainingSummary object and MulticlassClassificationEvaluator now supports weightedTruePositiveRate and weightedFalsePositiveRate metric.
    • Arithmetic operations can be performed on window aggregates.
  • Bug Fixes
    • DataFrame.head() returns a list when n is 1.
    • DataFrame.union() and DataFrame.unionAll() now performs union of rows based on columns position.
    • DataFrame.groupBy() and DataFrame.groupby() now accepts columns as positional arguments as well, for example df.groupBy("col1", "col2").
    • MLlib Functions attribute numClasses and intercept now return value.
    • Appropriate error is raised if invalid file is passed to pyspark2teradataml.
    • when function accepts Column also along with literal for value argument.

teradatamlspk 20.0.0.0

  • teradatamlspk 20.0.0.0 is the initial release version. Please refer to the teradatamlspk User Guide for the available API's and their functionality.

Installation and Requirements

Package Requirements:

  • Python 3.9 or later

Note: 32-bit Python is not supported.

Minimum System Requirements:

  • Windows 7 (64Bit) or later
  • macOS 10.9 (64Bit) or later
  • Red Hat 7 or later versions
  • Ubuntu 16.04 or later versions
  • CentOS 7 or later versions
  • SLES 12 or later versions
  • Teradata Vantage Advanced SQL Engine:
    • Advanced SQL Engine 16.20 Feature Update 1 or later

Installation

Use pip to install the teradatamlspk for running PySpark workloads.

Platform Command
macOS/Linux pip install teradatamlspk
Windows py -3 -m pip install teradatamlspk

When upgrading to a new version, you may need to use pip install's --no-cache-dir option to force the download of the new version.

Platform Command
macOS/Linux pip install --no-cache-dir -U teradatamlspk
Windows py -3 -m pip install --no-cache-dir -U teradatamlspk

Usage the teradatamlspk Package

teradatamlspk has a utility pyspark2teradataml which accepts either PySpark script or PySpark notebook or a directory which has PySpark scripts, analyzes and generates 2 files as below:

  1. HTML file - Created in the same directory where users PySpark script or notebook resides with name as <your pyspark script name>_tdmlspk.html. This file contains the script conversion report. Based on the report user can take the action on the generated scripts or notebooks.
    • A single HTML file for directory which has PySpark scripts will be created with name <your directory name>_tdmlspk.html.
  2. Python script/notebook - Created in the same directory where users PySpark script/notebook resides with name as <your pyspark script name>_tdmlspk.py for PySpark script or <your pyspark script name>_tdmlspk.ipynb for notebook, that can be run on Vantage.
    • Refer to the HTML report to understand the changes done and required to be done in the script/notebook.

Example to demostrate the usage of utility pyspark2teradataml

>>> from teradatamlspk import pyspark2teradataml
>>> pyspark2teradataml('/tmp/pyspark_script.py')
Python script '/tmp/pyspark_script.py' converted to '/tmp/pyspark_script_tdmlspk.py' successfully.
Script conversion report '/tmp/pyspark_script_tdmlspk.html' published successfully. 

Example to demostrate the teradatamlspk DataFrame creation.

>>> from teradatamlspk.sql import TeradataSession.
>>> spark = TeradataSession.builder.getOrCreate(host=host, user = user, password=password)
>>> df = spark.createDataFrame("test_classification")
>>> df.show()
+----------------------+---------------------+---------------------+----------------------+-------+
|         col1         |         col2        |         col3        |         col4         | label |
+----------------------+---------------------+---------------------+----------------------+-------+
| -1.1305820619922704  | -0.0202959251414216 | -0.7102336334648424 | -1.4409910829920618  |   0   |
| -0.28692000017174224 | -0.7169529842687833 | -0.9865850877151031 |  -0.848214734984639  |   0   |
| -2.5604297516143286  |  0.4022323367243113 | -1.1007419820939435 | -2.9595882598466674  |   0   |
|  0.4223414406917685  | -2.0391144030275625 |  -2.053215806414584 | -0.8491230457662061  |   0   |
|  0.7216694959200303  | -1.1215566442946217 | -0.8318398647044646 | 0.15074209659533433  |   0   |
| -0.9861325665504175  |  1.7105310292848412 |  1.3382818041204743 | -0.08534109029742933 |   1   |
| -0.5097927128625588  |  0.4926589443964751 |  0.2482067293662461 | -0.3095907315896897  |   1   |
| 0.18332468205821462  |  -0.774610353732039 |  -0.766054694735782 | -0.29366863291253276 |   0   |
| -0.4032571038523639  |  2.0061840569850093 |  2.0275124771199318 |  0.8508919440196763  |   1   |
| -0.07156025619387396 |  0.2295539000122874 | 0.21654344712218576 | 0.06527397921673575  |   1   |
+----------------------+---------------------+---------------------+----------------------+-------+

Documentation

General product information, including installation instructions, is available in the Teradata Documentation website

License

Use of the Teradata Spark Package is governed by the License Agreement for teradatamlspk and pyspark2teradataml. After installation, the LICENSE and LICENSE-3RD-PARTY files are located in the teradatamlspk directory of the Python installation directory.