This repository has been archived by the owner on Dec 1, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 55
/
create_train_test_split.py
154 lines (123 loc) · 6.16 KB
/
create_train_test_split.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
#!/usr/bin/env python3
"""
Create a train-test-validation split for the quranic text file.
Author: Hamzah Khan
"""
from argparse import ArgumentParser
import logging
import os
from typing import Dict
from typing import Tuple
from sklearn.model_selection import train_test_split
from utils.files import write_csv
import utils.text as text_utils
# This gives us a 60-20-20 split by default.
DEFAULT_RANDOM_SEED = 1
TRAIN_SPLIT_FRACTION = 0.6
TEST_SPLIT_FRACTION = 0.2
VALIDATION_SPLIT_FRACTION = 0.2
NUM_SURAHS = 114
parser = ArgumentParser(description='Tarteel Data Train-Test-Validation Splitter')
parser.add_argument('-f', '--path-to-quran-json', type=str, default='data/data-uthmani.json',
help='Path to the Quran text JSON file.')
parser.add_argument('-o', '--output_directory', type=str, default='.cache')
parser.add_argument(
'-g', '--group-identical-text', action='store_true',
help='If True, ayahs with identical text will be grouped into one set, not spread across '
'multiple sets.')
parser.add_argument('--train-frac', type=float, default=TRAIN_SPLIT_FRACTION)
parser.add_argument('--test-frac', type=float, default=TEST_SPLIT_FRACTION)
parser.add_argument('--validation-frac', type=float, default=VALIDATION_SPLIT_FRACTION)
parser.add_argument('-s', '--seed', type=int, default=DEFAULT_RANDOM_SEED)
parser.add_argument(
'--log', choices=['DEBUG', 'INFO', 'WARNING', 'CRITICAL'], default='INFO',
help='Logging level.'
)
args = parser.parse_args()
numeric_level = getattr(logging, args.log, None)
logging.basicConfig(level=numeric_level)
def create_train_test_validation_split(
ayahs_to_text: Dict,
train_test_validate_fractions: Tuple[int, int, int],
should_group_identical_text: bool = True,
random_seed: int = DEFAULT_RANDOM_SEED):
"""
Create a train-test-validation split over ayahs with the same text, given the Quranic data.
Returns a list of lists, each an ayah group, containing the ayah numbers.
"""
train_frac = train_test_validate_fractions[0]
test_frac = train_test_validate_fractions[1]
validate_frac = train_test_validate_fractions[2]
# The fractions should sum to 1.0, or we throw an error.
if abs(sum(train_test_validate_fractions) - 1.0) > 1e-6:
raise Exception("Train-test-validation fractions do not sum to 1.")
if should_group_identical_text:
# Initialize text to ayah group dictionary.
text_to_grouped_ayahs = {}
# Cluster ayahs with the same text.
for ayah_num in ayahs_to_text:
ayah_text = ayahs_to_text[ayah_num]
# Initialize if ayah text is not an entry yet.
if ayah_text not in text_to_grouped_ayahs:
text_to_grouped_ayahs[ayah_text] = []
text_to_grouped_ayahs[ayah_text].append(ayah_num)
# Get grouped list of ayahs.
ayah_groups = list(text_to_grouped_ayahs.values())
# If we want identical-text ayahs to not be grouped (and therefore allow the same text
# in multiple data sets), then extract the ayah numbers.
else:
ayah_groups = [group for group in ayahs_to_text.keys()]
# Splitting will be done in two steps, so identify the proper fractions for them.
first_split_frac = train_frac + validate_frac
second_split_frac = 1.0 - (validate_frac / first_split_frac)
# Perform the actual splits on the indices.
X_train_valid, X_test = train_test_split(range(len(ayah_groups)),
train_size=first_split_frac,
random_state=random_seed,
shuffle=True)
X_train, X_valid = train_test_split(X_train_valid,
train_size=second_split_frac,
random_state=random_seed,
shuffle=True)
# Convert the indices back into ayah groups.
X_train = [ayah_groups[index] for index in X_train]
X_test = [ayah_groups[index] for index in X_test]
X_valid = [ayah_groups[index] for index in X_valid]
return X_train, X_test, X_valid
def save_split_data(output_directory, filename, split_data):
"""Create and saves a file for a specific split.
Each line is a comma separated list of groups of ayah numbers.
"""
output_path = os.path.join(output_directory, filename + ".csv")
headers = ('surah_num', 'ayah_num')
split_data.insert(0, headers)
write_csv(output_path, split_data)
def save_splits(output_directory, random_seed, split_fractions, X_train, X_test, X_valid):
"""Save the train-test-validation splits to three files."""
# Create the filenames.
train_filename = "_".join(
["train", "fraction", str(split_fractions[0]), "seed", str(random_seed)])
test_filename = "_".join(
["test", "fraction", str(split_fractions[1]), "seed", str(random_seed)])
validate_filename = "_".join(
["validate", "fraction", str(split_fractions[2]), "seed", str(random_seed)])
# Save the data to the specified location.
save_split_data(output_directory, train_filename, X_train)
save_split_data(output_directory, test_filename, X_test)
save_split_data(output_directory, validate_filename, X_valid)
if __name__ == '__main__':
# Load the Qur'anic Json data.
quran_json_obj = text_utils.load_quran_obj_from_json(args.path_to_quran_json)
# Convert the Json data to a dictionary of ayah numbers as keys and text as values.
ayahs_to_text = text_utils.convert_quran_json_to_dict(
quran_json_obj, should_include_bismillah=False)
# Run the ayah split, forming groups of ayah numbers with identical text.
split_fractions = (args.train_frac, args.test_frac, args.validation_frac)
X_train, X_test, X_valid = create_train_test_validation_split(
ayahs_to_text, split_fractions, args.group_identical_text, args.seed)
# Save the resulting split to a file.
if args.output_directory is not None:
save_splits(args.output_directory, args.seed, split_fractions, X_train, X_test, X_valid)
logging.info("Split data written to files in " + args.output_directory)
else:
logging.info("Data splitting completed.")