-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathnode.py
240 lines (190 loc) · 9.37 KB
/
node.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import cv2
import numpy as np
from PIL import Image
import torch
def pil2tensor(image: Image) -> torch.Tensor:
return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0)
def tensor2pil(t_image: torch.Tensor) -> Image:
return Image.fromarray(np.clip(255.0 * t_image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8))
def apply_gaussian_blur(image_np, ksize=5, sigmaX=1.0):
if ksize % 2 == 0:
ksize += 1 # ksize must be odd
blurred_image = cv2.GaussianBlur(image_np, (ksize, ksize), sigmaX=sigmaX)
return blurred_image
def apply_guided_filter(image_np, radius, eps):
# Convert image to float32 for the guided filter
image_np_float = np.float32(image_np) / 255.0
# Apply the guided filter
filtered_image = cv2.ximgproc.guidedFilter(image_np_float, image_np_float, radius, eps)
# Scale back to uint8
filtered_image = np.clip(filtered_image * 255, 0, 255).astype(np.uint8)
return filtered_image
class TTPlanet_Tile_Preprocessor_GF:
def __init__(self, blur_strength=3.0, radius=7, eps=0.01):
self.blur_strength = blur_strength
self.radius = radius
self.eps = eps
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"scale_factor": ("FLOAT", {"default": 1.00, "min": 1.00, "max": 8.00, "step": 0.05}),
"blur_strength": ("FLOAT", {"default": 2.0, "min": 1.0, "max": 10.0, "step": 0.1}),
"radius": ("INT", {"default": 7, "min": 1, "max": 20, "step": 1}),
"eps": ("FLOAT", {"default": 0.01, "min": 0.001, "max": 0.1, "step": 0.001}),
},
"optional": {}
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("image_output",)
FUNCTION = 'process_image'
CATEGORY = 'TTP_TILE'
def process_image(self, image, scale_factor, blur_strength, radius, eps):
ret_images = []
for i in image:
# Convert tensor to PIL for processing
_canvas = tensor2pil(torch.unsqueeze(i, 0)).convert('RGB')
img_np = np.array(_canvas)[:, :, ::-1] # RGB to BGR
# Apply Gaussian blur
img_np = apply_gaussian_blur(img_np, ksize=int(blur_strength), sigmaX=blur_strength / 2)
# Apply Guided Filter
img_np = apply_guided_filter(img_np, radius, eps)
# Resize image
height, width = img_np.shape[:2]
new_width = int(width / scale_factor)
new_height = int(height / scale_factor)
resized_down = cv2.resize(img_np, (new_width, new_height), interpolation=cv2.INTER_AREA)
resized_img = cv2.resize(resized_down, (width, height), interpolation=cv2.INTER_LINEAR)
# Convert OpenCV back to PIL and then to tensor
pil_img = Image.fromarray(resized_img[:, :, ::-1]) # BGR to RGB
tensor_img = pil2tensor(pil_img)
ret_images.append(tensor_img)
return (torch.cat(ret_images, dim=0),)
class TTPlanet_Tile_Preprocessor_Simple:
def __init__(self, blur_strength=3.0):
self.blur_strength = blur_strength
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"scale_factor": ("FLOAT", {"default": 2.00, "min": 1.00, "max": 8.00, "step": 0.05}),
"blur_strength": ("FLOAT", {"default": 1.0, "min": 1.0, "max": 20.0, "step": 0.1}),
},
"optional": {}
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("image_output",)
FUNCTION = 'process_image'
CATEGORY = 'TTP_TILE'
def process_image(self, image, scale_factor, blur_strength):
ret_images = []
for i in image:
# Convert tensor to PIL for processing
_canvas = tensor2pil(torch.unsqueeze(i, 0)).convert('RGB')
# Convert PIL image to OpenCV format
img_np = np.array(_canvas)[:, :, ::-1] # RGB to BGR
# Resize image first if you want blur to apply after resizing
height, width = img_np.shape[:2]
new_width = int(width / scale_factor)
new_height = int(height / scale_factor)
resized_down = cv2.resize(img_np, (new_width, new_height), interpolation=cv2.INTER_AREA)
resized_img = cv2.resize(resized_down, (width, height), interpolation=cv2.INTER_LINEAR)
# Apply Gaussian blur after resizing
img_np = apply_gaussian_blur(resized_img, ksize=int(blur_strength), sigmaX=blur_strength / 2)
# Convert OpenCV back to PIL and then to tensor
_canvas = Image.fromarray(img_np[:, :, ::-1]) # BGR to RGB
tensor_img = pil2tensor(_canvas)
ret_images.append(tensor_img)
return (torch.cat(ret_images, dim=0),)
class TTPlanet_Tile_Preprocessor_cufoff:
def __init__(self, blur_strength=3.0, cutoff_frequency=30, filter_strength=1.0):
self.blur_strength = blur_strength
self.cutoff_frequency = cutoff_frequency
self.filter_strength = filter_strength
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"scale_factor": ("FLOAT", {"default": 1.00, "min": 1.00, "max": 8.00, "step": 0.05}),
"blur_strength": ("FLOAT", {"default": 2.0, "min": 1.0, "max": 10.0, "step": 0.1}),
"cutoff_frequency": ("INT", {"default": 100, "min": 0, "max": 256, "step": 1}),
"filter_strength": ("FLOAT", {"default": 1.0, "min": 0.1, "max": 10.0, "step": 0.1}),
},
"optional": {}
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("image_output",)
FUNCTION = 'process_image'
CATEGORY = 'TTP_TILE'
def process_image(self, image, scale_factor, blur_strength, cutoff_frequency, filter_strength):
ret_images = []
for i in image:
# Convert tensor to PIL for processing
_canvas = tensor2pil(torch.unsqueeze(i, 0)).convert('RGB')
img_np = np.array(_canvas)[:, :, ::-1] # RGB to BGR
# Apply low pass filter with new strength parameter
img_np = apply_low_pass_filter(img_np, cutoff_frequency, filter_strength)
# Resize image
height, width = img_np.shape[:2]
new_width = int(width / scale_factor)
new_height = int(height / scale_factor)
resized_down = cv2.resize(img_np, (new_width, new_height), interpolation=cv2.INTER_AREA)
resized_img = cv2.resize(resized_down, (width, height), interpolation=cv2.INTER_LINEAR)
# Apply Gaussian blur
img_np = apply_gaussian_blur(img_np, ksize=int(blur_strength), sigmaX=blur_strength / 2)
# Convert OpenCV back to PIL and then to tensor
pil_img = Image.fromarray(resized_img[:, :, ::-1]) # BGR to RGB
tensor_img = pil2tensor(pil_img)
ret_images.append(tensor_img)
return (torch.cat(ret_images, dim=0),)
def mask_to_pil(mask) -> Image:
if isinstance(mask, torch.Tensor):
mask_np = mask.squeeze().cpu().numpy()
elif isinstance(mask, np.ndarray):
mask_np = mask
else:
raise TypeError("Unsupported mask type")
mask_pil = Image.fromarray((mask_np * 255).astype(np.uint8))
return mask_pil
class MaskBlackener:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"mask": ("MASK",),
},
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("blackened_image",)
FUNCTION = 'apply_black_mask'
CATEGORY = 'Image Processing'
def apply_black_mask(self, image, mask):
# Convert image tensor to PIL
image_pil = tensor2pil(image.squeeze(0)).convert('RGB')
# Convert mask to PIL
mask_pil = mask_to_pil(mask).convert('L')
# Create a black image of the same size
black_image = Image.new('RGB', image_pil.size, (0, 0, 0))
# Apply the mask: use the original image where mask is black, and black image where mask is white
blackened_image = Image.composite(black_image, image_pil, mask_pil)
# Convert the result back to tensor
blackened_image_tensor = pil2tensor(blackened_image)
return (blackened_image_tensor,)
NODE_CLASS_MAPPINGS = {
"TTPlanet_Tile_Preprocessor_GF": TTPlanet_Tile_Preprocessor_GF,
"TTPlanet_Tile_Preprocessor_Simple": TTPlanet_Tile_Preprocessor_Simple,
"TTPlanet_Tile_Preprocessor_cufoff": TTPlanet_Tile_Preprocessor_cufoff,
"TTPlanet_inpainting_Preprecessor": MaskBlackener
}
NODE_DISPLAY_NAME_MAPPINGS = {
"TTPlanet_Tile_Preprocessor_GF": "🪐TTP Tile Preprocessor HYDiT GF",
"TTPlanet_Tile_Preprocessor_Simple": "🪐TTP Tile Preprocessor HYDiT Simple",
"TTPlanet_Tile_Preprocessor_cufoff": "🪐TTP Tile Preprocessor HYDiT cufoff",
"TTPlanet_inpainting_Preprecessor" : "🪐TTP Inpainting Preprocessor HYDiT"
}