-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathJC2.py
870 lines (754 loc) · 38.1 KB
/
JC2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
# Based on https://huggingface.co/John6666/joy-caption-alpha-two-cli-modand https://github.com/chflame163/ComfyUI_LayerStyle
import os
import sys
import torch
from torch import nn
from typing import List, Union
from PIL import Image
import torchvision.transforms.functional as TVF
from torchvision.transforms import ToPILImage
import numpy as np
import folder_paths
import json
import logging
from transformers import AutoProcessor, AutoModelForCausalLM
from huggingface_hub import snapshot_download
import shutil
import gc
import comfy.model_management as mm
import comfy.sd
# Define the Joy2_Model class
class Joy2_Model:
def __init__(self, clip_processor, clip_model, tokenizer, text_model, image_adapter):
self.clip_processor = clip_processor
self.clip_model = clip_model
self.tokenizer = tokenizer
self.text_model = text_model
self.image_adapter = image_adapter
# Define the ImageAdapter class
class ImageAdapter(nn.Module):
def __init__(self, input_features: int, output_features: int, ln1: bool, pos_emb: bool, num_image_tokens: int,
deep_extract: bool):
super().__init__()
self.deep_extract = deep_extract
if self.deep_extract:
input_features = input_features * 5
self.linear1 = nn.Linear(input_features, output_features)
self.activation = nn.GELU()
self.linear2 = nn.Linear(output_features, output_features)
self.ln1 = nn.Identity() if not ln1 else nn.LayerNorm(input_features)
self.pos_emb = None if not pos_emb else nn.Parameter(torch.zeros(num_image_tokens, input_features))
# Other tokens (<|image_start|>, <|image_end|>, <|eot_id|>)
self.other_tokens = nn.Embedding(3, output_features)
self.other_tokens.weight.data.normal_(mean=0.0, std=0.02) # Matches HF's implementation of LLaMA
def forward(self, vision_outputs: torch.Tensor):
if self.deep_extract:
x = torch.cat((
vision_outputs[-2],
vision_outputs[3],
vision_outputs[7],
vision_outputs[13],
vision_outputs[20],
), dim=-1)
assert len(x.shape) == 3, f"Expected 3, got {len(x.shape)}" # batch, tokens, features
assert x.shape[-1] == vision_outputs[-2].shape[-1] * 5, f"Expected {vision_outputs[-2].shape[-1] * 5}, got {x.shape[-1]}"
else:
x = vision_outputs[-2]
x = self.ln1(x)
if self.pos_emb is not None:
assert x.shape[-2:] == self.pos_emb.shape, f"Expected {self.pos_emb.shape}, got {x.shape[-2:]}"
x = x + self.pos_emb
x = self.linear1(x)
x = self.activation(x)
x = self.linear2(x)
other_tokens = self.other_tokens(
torch.tensor([0, 1], device=self.other_tokens.weight.device).expand(x.shape[0], -1))
assert other_tokens.shape == (
x.shape[0], 2, x.shape[2]), f"Expected {(x.shape[0], 2, x.shape[2])}, got {other_tokens.shape}"
x = torch.cat((other_tokens[:, 0:1], x, other_tokens[:, 1:2]), dim=1)
return x
def get_eot_embedding(self):
return self.other_tokens(torch.tensor([2], device=self.other_tokens.weight.device)).squeeze(0)
# 设置全局设备变量
current_device = "cuda:0"
def get_torch_device_patched():
global current_device
if (
not torch.cuda.is_available()
or comfy.model_management.cpu_state == comfy.model_management.CPUState.CPU
):
return torch.device("cpu")
return torch.device(current_device)
# 覆盖ComfyUI的设备获取函数
comfy.model_management.get_torch_device = get_torch_device_patched
def load_models(model_path, dtype, device="cuda:0", device_map=None):
global current_device
current_device = device # 设置当前设备
from transformers import AutoModel, AutoProcessor, AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, AutoModelForCausalLM
from peft import PeftModel
JC_lora = "text_model"
use_lora = True if JC_lora != "none" else False
CLIP_PATH = os.path.join(folder_paths.models_dir, "clip_vision", "google--siglip-so400m-patch14-384")
CHECKPOINT_PATH = os.path.join(folder_paths.models_dir, "Joy_caption", "cgrkzexw-599808")
LORA_PATH = os.path.join(CHECKPOINT_PATH, "text_model")
if os.path.exists(CLIP_PATH):
print("Start to load existing VLM")
else:
print("VLM not found locally. Downloading google/siglip-so400m-patch14-384...")
try:
snapshot_download(
repo_id="google/siglip-so400m-patch14-384",
local_dir=os.path.join(folder_paths.models_dir, "clip_vision", "cache--google--siglip-so400m-patch14-384"),
local_dir_use_symlinks=False,
resume_download=True
)
shutil.move(os.path.join(folder_paths.models_dir, "clip_vision", "cache--google--siglip-so400m-patch14-384"), CLIP_PATH)
print(f"VLM has been downloaded to {CLIP_PATH}")
except Exception as e:
print(f"Error downloading CLIP model: {e}")
raise
try:
if dtype == "nf4":
from transformers import BitsAndBytesConfig
nf4_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.bfloat16
)
print("Loading in NF4")
print("Loading CLIP")
clip_processor = AutoProcessor.from_pretrained(CLIP_PATH)
clip_model = AutoModel.from_pretrained(CLIP_PATH).vision_model
print("Loading VLM's custom vision model")
checkpoint = torch.load(os.path.join(CHECKPOINT_PATH, "clip_model.pt"), map_location=current_device, weights_only=False)
checkpoint = {k.replace("_orig_mod.module.", ""): v for k, v in checkpoint.items()}
clip_model.load_state_dict(checkpoint)
del checkpoint
clip_model.eval().requires_grad_(False).to(current_device)
print("Loading tokenizer")
tokenizer = AutoTokenizer.from_pretrained(os.path.join(CHECKPOINT_PATH, "text_model"), use_fast=True)
assert isinstance(tokenizer, (PreTrainedTokenizer, PreTrainedTokenizerFast)), f"Tokenizer is of type {type(tokenizer)}"
print(f"Loading LLM: {model_path}")
text_model = AutoModelForCausalLM.from_pretrained(
model_path,
quantization_config=nf4_config,
device_map=current_device, # 统一使用指定设备
torch_dtype=torch.bfloat16
).eval()
if use_lora and os.path.exists(LORA_PATH):
print("Loading VLM's custom text model")
text_model = PeftModel.from_pretrained(
model=text_model,
model_id=LORA_PATH,
device_map=current_device, # 统一使用指定设备
quantization_config=nf4_config
)
text_model = text_model.merge_and_unload(safe_merge=True)
else:
print("VLM's custom text model isn't loaded")
print("Loading image adapter")
image_adapter = ImageAdapter(
clip_model.config.hidden_size,
text_model.config.hidden_size,
False, False, 38,
False
).eval().to("cpu")
image_adapter.load_state_dict(
torch.load(os.path.join(CHECKPOINT_PATH, "image_adapter.pt"), map_location=current_device, weights_only=False)
)
image_adapter.eval().to(current_device)
else: # bf16
print("Loading in bfloat16")
print("Loading CLIP")
clip_processor = AutoProcessor.from_pretrained(CLIP_PATH)
clip_model = AutoModel.from_pretrained(CLIP_PATH).vision_model
if os.path.exists(os.path.join(CHECKPOINT_PATH, "clip_model.pt")):
print("Loading VLM's custom vision model")
checkpoint = torch.load(os.path.join(CHECKPOINT_PATH, "clip_model.pt"), map_location=current_device, weights_only=False)
checkpoint = {k.replace("_orig_mod.module.", ""): v for k, v in checkpoint.items()}
clip_model.load_state_dict(checkpoint)
del checkpoint
clip_model.eval().requires_grad_(False).to(current_device)
print("Loading tokenizer")
tokenizer = AutoTokenizer.from_pretrained(os.path.join(CHECKPOINT_PATH, "text_model"), use_fast=True)
assert isinstance(tokenizer, (PreTrainedTokenizer, PreTrainedTokenizerFast)), f"Tokenizer is of type {type(tokenizer)}"
print(f"Loading LLM: {model_path}")
text_model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map=current_device, # 统一使用指定设备
torch_dtype=torch.bfloat16
).eval()
if use_lora and os.path.exists(LORA_PATH):
print("Loading VLM's custom text model")
text_model = PeftModel.from_pretrained(
model=text_model,
model_id=LORA_PATH,
device_map=current_device # 统一使用指定设备
)
text_model = text_model.merge_and_unload(safe_merge=True)
else:
print("VLM's custom text model isn't loaded")
print("Loading image adapter")
image_adapter = ImageAdapter(
clip_model.config.hidden_size,
text_model.config.hidden_size,
False, False, 38,
False
).eval().to(current_device)
image_adapter.load_state_dict(
torch.load(os.path.join(CHECKPOINT_PATH, "image_adapter.pt"), map_location=current_device, weights_only=False)
)
except Exception as e:
print(f"Error loading models: {e}", )
finally:
pass # 可以在这里添加内存释放逻辑(如果需要)
return Joy2_Model(clip_processor, clip_model, tokenizer, text_model, image_adapter)
# Define the stream_chat function
@torch.inference_mode()
def stream_chat(input_images: List[Image.Image], caption_type: str, caption_length: Union[str, int],
extra_options: list[str], name_input: str, custom_prompt: str,
max_new_tokens: int, top_p: float, temperature: float, batch_size: int, model: Joy2_Model, current_device=str):
# 确定 chat_device
if 'cuda' in current_device:
chat_device = 'cuda'
elif 'cpu' in current_device:
chat_device = 'cpu'
else:
raise ValueError(f"Unsupported device type: {current_device}")
CAPTION_TYPE_MAP = {
"Descriptive": [
"Write a descriptive caption for this image in a formal tone.",
"Write a descriptive caption for this image in a formal tone within {word_count} words.",
"Write a {length} descriptive caption for this image in a formal tone.",
],
"Descriptive (Informal)": [
"Write a descriptive caption for this image in a casual tone.",
"Write a descriptive caption for this image in a casual tone within {word_count} words.",
"Write a {length} descriptive caption for this image in a casual tone.",
],
"Training Prompt": [
"Write a stable diffusion prompt for this image.",
"Write a stable diffusion prompt for this image within {word_count} words.",
"Write a {length} stable diffusion prompt for this image.",
],
"MidJourney": [
"Write a MidJourney prompt for this image.",
"Write a MidJourney prompt for this image within {word_count} words.",
"Write a {length} MidJourney prompt for this image.",
],
"Booru tag list": [
"Write a list of Booru tags for this image.",
"Write a list of Booru tags for this image within {word_count} words.",
"Write a {length} list of Booru tags for this image.",
],
"Booru-like tag list": [
"Write a list of Booru-like tags for this image.",
"Write a list of Booru-like tags for this image within {word_count} words.",
"Write a {length} list of Booru-like tags for this image.",
],
"Art Critic": [
"Analyze this image like an art critic would with information about its composition, style, symbolism, the use of color, light, any artistic movement it might belong to, etc.",
"Analyze this image like an art critic would with information about its composition, style, symbolism, the use of color, light, any artistic movement it might belong to, etc. Keep it within {word_count} words.",
"Analyze this image like an art critic would with information about its composition, style, symbolism, the use of color, light, any artistic movement it might belong to, etc. Keep it {length}.",
],
"Product Listing": [
"Write a caption for this image as though it were a product listing.",
"Write a caption for this image as though it were a product listing. Keep it under {word_count} words.",
"Write a {length} caption for this image as though it were a product listing.",
],
"Social Media Post": [
"Write a caption for this image as if it were being used for a social media post.",
"Write a caption for this image as if it were being used for a social media post. Limit the caption to {word_count} words.",
"Write a {length} caption for this image as if it were being used for a social media post.",
],
}
all_captions = []
# 'any' means no length specified
length = None if caption_length == "any" else caption_length
if isinstance(length, str):
try:
length = int(length)
except ValueError:
pass
# Build prompt
if length is None:
map_idx = 0
elif isinstance(length, int):
map_idx = 1
elif isinstance(length, str):
map_idx = 2
else:
raise ValueError(f"Invalid caption length: {length}")
prompt_str = CAPTION_TYPE_MAP[caption_type][map_idx]
# Add extra options
if len(extra_options) > 0:
prompt_str += " " + " ".join(extra_options)
# Add name, length, word_count
prompt_str = prompt_str.format(name=name_input, length=caption_length, word_count=caption_length)
if custom_prompt.strip() != "":
prompt_str = custom_prompt.strip()
# For debugging
print(f"Prompt: {prompt_str}")
for i in range(0, len(input_images), batch_size):
batch = input_images[i:i + batch_size]
for input_image in batch:
try:
# Preprocess image
image = input_image.resize((384, 384), Image.LANCZOS)
pixel_values = TVF.pil_to_tensor(image).unsqueeze(0) / 255.0
pixel_values = TVF.normalize(pixel_values, [0.5], [0.5])
pixel_values = pixel_values.to(chat_device)
except ValueError as e:
print(f"Error processing image: {e}")
print("Skipping this image and continuing...")
continue
# Embed image
with torch.amp.autocast_mode.autocast(chat_device, enabled=True):
vision_outputs = model.clip_model(pixel_values=pixel_values, output_hidden_states=True)
image_features = vision_outputs.hidden_states
embedded_images = model.image_adapter(image_features).to(chat_device)
# Build the conversation
convo = [
{
"role": "system",
"content": "You are a helpful image captioner.",
},
{
"role": "user",
"content": prompt_str,
},
]
# Format the conversation
if hasattr(model.tokenizer, 'apply_chat_template'):
convo_string = model.tokenizer.apply_chat_template(convo, tokenize=False, add_generation_prompt=True)
else:
# Fallback if apply_chat_template is not available
convo_string = "<|eot_id|>\n"
for message in convo:
if message['role'] == 'system':
convo_string += f"<|system|>{message['content']}<|endoftext|>\n"
elif message['role'] == 'user':
convo_string += f"<|user|>{message['content']}<|endoftext|>\n"
else:
convo_string += f"{message['content']}<|endoftext|>\n"
convo_string += "<|eot_id|>"
assert isinstance(convo_string, str)
# Tokenize the conversation
convo_tokens = model.tokenizer.encode(convo_string, return_tensors="pt", add_special_tokens=False,
truncation=False)
prompt_tokens = model.tokenizer.encode(prompt_str, return_tensors="pt", add_special_tokens=False,
truncation=False)
assert isinstance(convo_tokens, torch.Tensor) and isinstance(prompt_tokens, torch.Tensor)
convo_tokens = convo_tokens.squeeze(0)
prompt_tokens = prompt_tokens.squeeze(0)
# Calculate where to inject the image
eot_id_indices = (convo_tokens == model.tokenizer.convert_tokens_to_ids("<|eot_id|>")).nonzero(as_tuple=True)[
0].tolist()
assert len(eot_id_indices) == 2, f"Expected 2 <|eot_id|> tokens, got {len(eot_id_indices)}"
preamble_len = eot_id_indices[1] - prompt_tokens.shape[0]
# Embed the tokens
convo_embeds = model.text_model.model.embed_tokens(convo_tokens.unsqueeze(0).to(current_device))
# Construct the input
input_embeds = torch.cat([
convo_embeds[:, :preamble_len],
embedded_images.to(dtype=convo_embeds.dtype),
convo_embeds[:, preamble_len:],
], dim=1).to(chat_device)
input_ids = torch.cat([
convo_tokens[:preamble_len].unsqueeze(0),
torch.zeros((1, embedded_images.shape[1]), dtype=torch.long),
convo_tokens[preamble_len:].unsqueeze(0),
], dim=1).to(chat_device)
attention_mask = torch.ones_like(input_ids)
generate_ids = model.text_model.generate(input_ids=input_ids, inputs_embeds=input_embeds,
attention_mask=attention_mask, do_sample=True,
suppress_tokens=None, max_new_tokens=max_new_tokens, top_p=top_p,
temperature=temperature)
# Trim off the prompt
generate_ids = generate_ids[:, input_ids.shape[1]:]
if generate_ids[0][-1] == model.tokenizer.eos_token_id or generate_ids[0][-1] == model.tokenizer.convert_tokens_to_ids(
"<|eot_id|>"):
generate_ids = generate_ids[:, :-1]
caption = model.tokenizer.batch_decode(generate_ids, skip_special_tokens=False,
clean_up_tokenization_spaces=False)[0]
all_captions.append(caption.strip())
return all_captions
def free_memory():
import gc
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
def cleanGPU():
gc.collect()
mm.unload_all_models()
mm.soft_empty_cache()
class JoyCaption2:
CATEGORY = 'TTP_Toolset'
FUNCTION = "joycaption2"
RETURN_TYPES = ("STRING",)
RETURN_NAMES = ("text",)
OUTPUT_IS_LIST = (True,)
def __init__(self):
self.NODE_NAME = 'JoyCaption2'
self.previous_model = None
@classmethod
def INPUT_TYPES(cls):
llm_model_list = ["unsloth/Meta-Llama-3.1-8B-Instruct", "Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2"]
dtype_list = ['nf4', 'bf16']
caption_type_list = [
"Descriptive", "Descriptive (Informal)", "Training Prompt", "MidJourney",
"Booru tag list", "Booru-like tag list", "Art Critic", "Product Listing",
"Social Media Post"
]
caption_length_list = ["any", "very short", "short", "medium-length", "long", "very long"] + [str(i) for i in range(20, 261, 5)]
# 获取extra_option.json路径
base_dir = os.path.dirname(os.path.abspath(__file__))
extra_option_file = os.path.join(base_dir, "extra_option.json")
# 加载extra_options_list
extra_options_list = {}
if os.path.isfile(extra_option_file):
try:
with open(extra_option_file, "r", encoding='utf-8') as f:
json_content = json.load(f)
for item in json_content:
option_name = item.get("name")
if option_name:
extra_options_list[option_name] = ("BOOLEAN", {"default": False})
except Exception as e:
print(f"Error loading extra_option.json: {e}")
else:
print(f"extra_option.json not found at {extra_option_file}. No extra options will be available.")
# 获取可用的GPU设备列表
gpu_devices = [f"cuda:{i}" for i in range(torch.cuda.device_count())]
if not gpu_devices:
gpu_devices = ["cpu"] # 如果没有GPU可用,则仅提供CPU选项
# 定义额外的输入字段
return {
"required": {
"image": ("IMAGE",),
"llm_model": (llm_model_list,),
"dtype": (dtype_list,),
"caption_type": (caption_type_list,),
"caption_length": (caption_length_list,),
"user_prompt": ("STRING", {"default": "", "multiline": True}),
"max_new_tokens": ("INT", {"default": 260, "min": 8, "max": 4096, "step": 1}),
"top_p": ("FLOAT", {"default": 0.8, "min": 0, "max": 1, "step": 0.01}),
"temperature": ("FLOAT", {"default": 0.6, "min": 0, "max": 1, "step": 0.01}),
"cache_model": ("BOOLEAN", {"default": False}),
"device": (gpu_devices,), # 新增GPU设备选择
"enable_extra_options": ("BOOLEAN", {"default": True, "label": "启用额外选项"}), # 新增开关
**extra_options_list,
"character_name": ("STRING", {"default": "", "multiline": False}),
},
}
def joycaption2(
self, image, llm_model, dtype, caption_type, caption_length,
user_prompt, max_new_tokens, top_p, temperature, cache_model, device,
enable_extra_options, character_name, **extra_options
):
ret_text = []
comfy_model_dir = os.path.join(folder_paths.models_dir, "LLM")
print(f"comfy_model_dir: {comfy_model_dir}")
if not os.path.exists(comfy_model_dir):
os.mkdir(comfy_model_dir)
sanitized_model_name = llm_model.replace('/', '--')
llm_model_path = os.path.join(comfy_model_dir, sanitized_model_name)
llm_model_path_cache = os.path.join(comfy_model_dir, "cache--" + sanitized_model_name)
# 使用用户选择的设备
selected_device = device if torch.cuda.is_available() else 'cpu'
model_loaded_on = selected_device # 跟踪模型加载在哪个设备上
try:
if os.path.exists(llm_model_path):
print(f"Start to load existing model on {selected_device}")
else:
print(f"Model not found locally. Downloading {llm_model}...")
snapshot_download(
repo_id=llm_model,
local_dir=llm_model_path_cache,
local_dir_use_symlinks=False,
resume_download=True
)
shutil.move(llm_model_path_cache, llm_model_path)
print(f"Model downloaded to {llm_model_path}...")
if self.previous_model is None:
try:
# 尝试加载模型
free_vram_bytes = mm.get_free_memory()
free_vram_gb = free_vram_bytes / (1024 ** 3)
print(f"Free VRAM: {free_vram_gb:.2f} GB")
if dtype == 'nf4' and free_vram_gb < 10:
print("Free VRAM is less than 10GB when loading 'nf4' model. Performing VRAM cleanup.")
cleanGPU()
elif dtype == 'bf16' and free_vram_gb < 20:
print("Free VRAM is less than 20GB when loading 'bf16' model. Performing VRAM cleanup.")
cleanGPU()
# 统一使用选择的设备
model = load_models(
model_path=llm_model_path, dtype=dtype, device=selected_device
)
except RuntimeError:
print("An error occurred while loading the model. Please check your configuration.")
else:
model = self.previous_model
except Exception as e:
print(f"Error loading model: {e}")
return None
print(f"Model loaded on {model_loaded_on}")
extra_prompts = []
if enable_extra_options:
base_dir = os.path.dirname(os.path.abspath(__file__))
extra_option_file = os.path.join(base_dir, "extra_option.json")
if os.path.isfile(extra_option_file):
try:
with open(extra_option_file, "r", encoding='utf-8') as f:
json_content = json.load(f)
for item in json_content:
name = item.get("name")
prompt = item.get("prompt")
if name and prompt:
if extra_options.get(name):
# 如果 prompt 中包含 {name},则替换为 character_name
if "{name}" in prompt:
prompt = prompt.replace("{name}", character_name)
extra_prompts.append(prompt)
except Exception as e:
print(f"Error reading extra_option.json: {e}")
else:
print(f"extra_option.json not found at {extra_option_file} during processing.")
extra = []
if enable_extra_options:
extra = extra_prompts
print(f"Extra options enabled: {extra_prompts}")
else:
print("No extra options provided.")
processed_images = [
Image.fromarray(
np.clip(255.0 * img.unsqueeze(0).cpu().numpy().squeeze(), 0, 255).astype(np.uint8)
).convert('RGB')
for img in image
]
try:
captions = stream_chat(
processed_images, caption_type, caption_length,
extra, "", user_prompt,
max_new_tokens, top_p, temperature, len(processed_images),
model, device # 确保传递正确的设备
)
ret_text.extend(captions)
except Exception as e:
print(f"Error during stream_chat: {e}")
return None
if cache_model:
self.previous_model = model
else:
self.previous_model = None
del model
free_memory()
return (ret_text,)
class ExtraOptionsNode:
CATEGORY = 'TTP_Toolset'
FUNCTION = "extra_options"
RETURN_TYPES = ("STRING",) # 改为返回单一字符串
RETURN_NAMES = ("extra_options_str",)
OUTPUT_IS_LIST = (False,) # 单一字符串输出
def __init__(self):
self.NODE_NAME = 'ExtraOptionsNode'
@classmethod
def INPUT_TYPES(cls):
# 获取 extra_option.json 的路径并加载选项
base_dir = os.path.dirname(os.path.abspath(__file__))
extra_option_file = os.path.join(base_dir, "extra_option.json")
extra_options_list = {}
if os.path.isfile(extra_option_file):
try:
with open(extra_option_file, "r", encoding='utf-8') as f:
json_content = json.load(f)
for item in json_content:
option_name = item.get("name")
if option_name:
# 定义每个额外选项为布尔输入
extra_options_list[option_name] = ("BOOLEAN", {"default": False})
except Exception as e:
print(f"Error loading extra_option.json: {e}")
else:
print(f"extra_option.json not found at {extra_option_file}. No extra options will be available.")
# 定义输入字段,包括开关和 character_name
return {
"required": {
"enable_extra_options": ("BOOLEAN", {"default": True, "label": "启用额外选项"}), # 开关
**extra_options_list, # 动态加载的额外选项
"character_name": ("STRING", {"default": "", "multiline": False}), # 移动 character_name
},
}
def extra_options(self, enable_extra_options, character_name, **extra_options):
"""
处理额外选项并返回已启用的提示列表。
如果启用了替换角色名称选项,并提供了 character_name,则进行替换。
"""
extra_prompts = []
if enable_extra_options:
base_dir = os.path.dirname(os.path.abspath(__file__))
extra_option_file = os.path.join(base_dir, "extra_option.json")
if os.path.isfile(extra_option_file):
try:
with open(extra_option_file, "r", encoding='utf-8') as f:
json_content = json.load(f)
for item in json_content:
name = item.get("name")
prompt = item.get("prompt")
if name and prompt:
if extra_options.get(name):
# 如果 prompt 中包含 {name},则替换为 character_name
if "{name}" in prompt:
prompt = prompt.replace("{name}", character_name)
extra_prompts.append(prompt)
except Exception as e:
print(f"Error reading extra_option.json: {e}")
else:
print(f"extra_option.json not found at {extra_option_file} during processing.")
# 将所有启用的提示拼接成一个字符串
return (" ".join(extra_prompts),) # 返回一个单一的合并字符串
class JoyCaption2_simple:
CATEGORY = 'TTP_Toolset'
FUNCTION = "joycaption2_simple"
RETURN_TYPES = ("STRING",)
RETURN_NAMES = ("text",)
OUTPUT_IS_LIST = (True,)
def __init__(self):
self.NODE_NAME = 'JoyCaption2_simple'
self.previous_model = None
@classmethod
def INPUT_TYPES(cls):
llm_model_list = [
"unsloth/Meta-Llama-3.1-8B-Instruct",
"Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2"
]
dtype_list = ['nf4', 'bf16']
caption_type_list = [
"Descriptive", "Descriptive (Informal)", "Training Prompt", "MidJourney",
"Booru tag list", "Booru-like tag list", "Art Critic", "Product Listing",
"Social Media Post"
]
caption_length_list = [
"any", "very short", "short", "medium-length", "long", "very long"
] + [str(i) for i in range(20, 261, 5)]
# 获取可用的GPU设备列表
gpu_devices = [f"cuda:{i}" for i in range(torch.cuda.device_count())]
if not gpu_devices:
gpu_devices = ["cpu"] # 如果没有GPU可用,则仅提供CPU选项
# 定义额外的输入字段
return {
"required": {
"image": ("IMAGE",),
"llm_model": (llm_model_list,),
"dtype": (dtype_list,),
"caption_type": (caption_type_list,),
"caption_length": (caption_length_list,),
"user_prompt": ("STRING", {"default": "", "multiline": True}),
"max_new_tokens": ("INT", {"default": 260, "min": 8, "max": 4096, "step": 1}),
"top_p": ("FLOAT", {"default": 0.8, "min": 0, "max": 1, "step": 0.01}),
"temperature": ("FLOAT", {"default": 0.6, "min": 0, "max": 1, "step": 0.01}),
"cache_model": ("BOOLEAN", {"default": False}),
"device": (gpu_devices,), # 新增GPU设备选择
},
"optional": {
"extra_options_node": ("STRING",{"forceInput": True}), # 接收来自 ExtraOptionsNode 的单一字符串
},
}
def joycaption2_simple(
self, image, llm_model, dtype, caption_type, caption_length,
user_prompt, max_new_tokens, top_p, temperature, cache_model, device,
extra_options_node=None # 设置默认值为 None
):
ret_text = []
comfy_model_dir = os.path.join(folder_paths.models_dir, "LLM")
print(f"comfy_model_dir: {comfy_model_dir}")
if not os.path.exists(comfy_model_dir):
os.mkdir(comfy_model_dir)
sanitized_model_name = llm_model.replace('/', '--')
llm_model_path = os.path.join(comfy_model_dir, sanitized_model_name)
llm_model_path_cache = os.path.join(comfy_model_dir, "cache--" + sanitized_model_name)
# 使用用户选择的设备
selected_device = device if torch.cuda.is_available() else 'cpu'
model_loaded_on = selected_device # 跟踪模型加载在哪个设备上
try:
if os.path.exists(llm_model_path):
print(f"Start to load existing model on {selected_device}")
else:
print(f"Model not found locally. Downloading {llm_model}...")
snapshot_download(
repo_id=llm_model,
local_dir=llm_model_path_cache,
local_dir_use_symlinks=False,
resume_download=True
)
shutil.move(llm_model_path_cache, llm_model_path)
print(f"Model downloaded to {llm_model_path}...")
if self.previous_model is None:
try:
# 尝试加载模型
free_vram_bytes = mm.get_free_memory()
free_vram_gb = free_vram_bytes / (1024 ** 3)
print(f"Free VRAM: {free_vram_gb:.2f} GB")
if dtype == 'nf4' and free_vram_gb < 10:
print("Free VRAM is less than 10GB when loading 'nf4' model. Performing VRAM cleanup.")
cleanGPU()
elif dtype == 'bf16' and free_vram_gb < 20:
print("Free VRAM is less than 20GB when loading 'bf16' model. Performing VRAM cleanup.")
cleanGPU()
# 统一使用选择的设备
model = load_models(
model_path=llm_model_path, dtype=dtype, device=selected_device)
except RuntimeError:
print("An error occurred while loading the model. Please check your configuration.")
else:
model = self.previous_model
except Exception as e:
print(f"Error loading model: {e}")
return None
print(f"Model loaded on {model_loaded_on}")
# 接收来自 ExtraOptionsNode 的额外提示
extra = []
if extra_options_node and extra_options_node.strip():
extra = [extra_options_node] # 将单一字符串包装成列表
print(f"Extra options enabled: {extra_options_node}")
else:
print("No extra options provided.")
# 处理图像
processed_images = [
Image.fromarray(
np.clip(255.0 * img.unsqueeze(0).cpu().numpy().squeeze(), 0, 255).astype(np.uint8)
).convert('RGB')
for img in image
]
try:
captions = stream_chat(
processed_images, caption_type, caption_length,
extra, "", user_prompt,
max_new_tokens, top_p, temperature, len(processed_images),
model, device # 确保传递正确的设备
)
ret_text.extend(captions)
except Exception as e:
print(f"Error during stream_chat: {e}")
return ("Error generating captions.",)
if cache_model:
self.previous_model = model
else:
self.previous_model = None
del model
free_memory()
return (ret_text,)
# Register the node
NODE_CLASS_MAPPINGS = {
"JoyCaption2": JoyCaption2,
"ExtraOptionsNode": ExtraOptionsNode,
"JoyCaption2_simple": JoyCaption2_simple,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"JoyCaption2": "TTP_JoyCaption2_Full",
"ExtraOptionsNode": "TTP_ExtraOptionsNode",
"JoyCaption2_simple": "TTP_JoyCaption2_simple",
}