-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmultinomial_model.stan
32 lines (28 loc) · 1.4 KB
/
multinomial_model.stan
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
// Created on Fri Oct 21 2022
// @author: cwhittaker1000
data {
int<lower=0> K; // number of different lineage categories
int<lower=0> N; // number of unique sampling timepoints
int y[N, K]; // the responses (i.e. matrix where each column is total number of each lineage sampled at each timepoint, which are the rows)
// note that the first column should be the reference lineage you want to compare to.
vector[N] time; // the covariate (time) - scale this to be between 0 and 1 -> so max timepoint = 1
}
parameters {
vector[K-1] alpha_raw; // lineage-specific parameter for intercept
vector[K-1] beta_raw; // lineage-specific parameter for time-coefficient
}
transformed parameters {
vector[K] alpha = to_vector(append_col(0.0, to_row_vector(alpha_raw))); // we set parameters for reference lineage to 0, as we're dealing with relative growth rates
vector[K] beta = to_vector(append_col(0.0, to_row_vector(beta_raw))); // we set parameters for reference lineage to 0, as we're dealing with relative growth rates
matrix[N, K] theta;
for (i in 1:N) {
theta[i, ] = to_row_vector(softmax(alpha + beta * time[i])); // softmax imposes a sum-to-one constraint (required as we're dealing with probabilities)
}
}
model {
alpha ~ normal(0, 50);
beta ~ normal(0, 50);
for (n in 1:N) {
target += multinomial_lpmf(y[n, ] | to_vector(theta[n, ]));
}
}