-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgenerate.py
235 lines (200 loc) · 8.63 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#!/usr/bin/python
# -*- coding:utf-8 -*-
import argparse
import json
import os
import pickle as pkl
from tqdm import tqdm
from copy import deepcopy
from multiprocessing import Pool
import yaml
import torch
from torch.utils.data import DataLoader
import models
from utils.config_utils import overwrite_values
from data.converter.pdb_to_list_blocks import pdb_to_list_blocks
from data.converter.list_blocks_to_pdb import list_blocks_to_pdb
from data.format import VOCAB, Atom
from data import create_dataloader, create_dataset
from utils.logger import print_log
from utils.random_seed import setup_seed
from utils.const import sidechain_atoms
def get_best_ckpt(ckpt_dir):
with open(os.path.join(ckpt_dir, 'checkpoint', 'topk_map.txt'), 'r') as f:
ls = f.readlines()
ckpts = []
for l in ls:
k,v = l.strip().split(':')
k = float(k)
v = v.split('/')[-1]
ckpts.append((k,v))
# ckpts = sorted(ckpts, key=lambda x:x[0])
best_ckpt = ckpts[0][1]
return os.path.join(ckpt_dir, 'checkpoint', best_ckpt)
def to_device(data, device):
if isinstance(data, dict):
for key in data:
data[key] = to_device(data[key], device)
elif isinstance(data, list) or isinstance(data, tuple):
res = [to_device(item, device) for item in data]
data = type(data)(res)
elif hasattr(data, 'to'):
data = data.to(device)
return data
def clamp_coord(coord):
# some models (e.g. diffab) will output very large coordinates (absolute value >1000) which will corrupt the pdb file
new_coord = []
for val in coord:
if abs(val) >= 1000:
val = 0
new_coord.append(val)
return new_coord
def overwrite_blocks(blocks, seq=None, X=None):
if seq is not None:
assert len(blocks) == len(seq), f'{len(blocks)} {len(seq)}'
new_blocks = []
for i, block in enumerate(blocks):
block = deepcopy(block)
if seq is None:
abrv = block.abrv
else:
abrv = VOCAB.symbol_to_abrv(seq[i])
if block.abrv != abrv:
if X is None:
block.units = [atom for atom in block.units if atom.name in VOCAB.backbone_atoms]
if X is not None:
coords = X[i]
atoms = VOCAB.backbone_atoms + sidechain_atoms[VOCAB.abrv_to_symbol(abrv)]
block.units = [
Atom(atom_name, clamp_coord(coord), atom_name[0]) for atom_name, coord in zip(atoms, coords)
]
block.abrv = abrv
new_blocks.append(block)
return new_blocks
def generate_wrapper(model, sample_opt={}):
if isinstance(model, models.AutoEncoder):
def wrapper(batch):
X, S, ppls = model.test(batch['X'], batch['S'], batch['mask'], batch['position_ids'], batch['lengths'], batch['atom_mask'])
return X, S, ppls
elif isinstance(model, models.LDMPepDesign):
def wrapper(batch):
X, S, ppls = model.sample(batch['X'], batch['S'], batch['mask'], batch['position_ids'], batch['lengths'], batch['atom_mask'],
L=batch['L'] if 'L' in batch else None, sample_opt=sample_opt)
return X, S, ppls
else:
raise NotImplementedError(f'Wrapper for {type(model)} not implemented')
return wrapper
def save_data(
_id, n,
x_pkl_file, s_pkl_file, pmetric_pkl_file,
ref_pdb, rec_chain, lig_chain, ref_save_dir, cand_save_dir,
seq_only, struct_only, backbone_only
):
X, S, pmetric = pkl.load(open(x_pkl_file, 'rb')), pkl.load(open(s_pkl_file, 'rb')), pkl.load(open(pmetric_pkl_file, 'rb'))
os.remove(x_pkl_file), os.remove(s_pkl_file), os.remove(pmetric_pkl_file)
if seq_only:
X = None
elif struct_only:
S = None
rec_blocks, lig_blocks = pdb_to_list_blocks(ref_pdb, selected_chains=[rec_chain, lig_chain])
ref_pdb = os.path.join(ref_save_dir, _id + "_ref.pdb")
list_blocks_to_pdb([rec_blocks, lig_blocks], [rec_chain, lig_chain], ref_pdb)
# os.system(f'cp {ref_pdb} {os.path.join(ref_save_dir, _id + "_ref.pdb")}')
ref_seq = ''.join([VOCAB.abrv_to_symbol(block.abrv) for block in lig_blocks])
lig_blocks = overwrite_blocks(lig_blocks, S, X)
gen_seq = ''.join([VOCAB.abrv_to_symbol(block.abrv) for block in lig_blocks])
save_dir = os.path.join(cand_save_dir, _id)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
gen_pdb = os.path.join(save_dir, _id + f'_gen_{n}.pdb')
list_blocks_to_pdb([rec_blocks, lig_blocks], [rec_chain, lig_chain], gen_pdb)
return {
'id': _id,
'number': n,
'gen_pdb': gen_pdb,
'ref_pdb': ref_pdb,
'pmetric': pmetric,
'rec_chain': rec_chain,
'lig_chain': lig_chain,
'ref_seq': ref_seq,
'gen_seq': gen_seq,
'seq_only': seq_only,
'struct_only': struct_only,
'backbone_only': backbone_only
}
def main(args, opt_args):
config = yaml.safe_load(open(args.config, 'r'))
config = overwrite_values(config, opt_args)
struct_only = config.get('struct_only', False)
seq_only = config.get('seq_only', False)
assert not (seq_only and struct_only)
backbone_only = config.get('backbone_only', False)
# load model
b_ckpt = args.ckpt if args.ckpt.endswith('.ckpt') else get_best_ckpt(args.ckpt)
ckpt_dir = os.path.split(os.path.split(b_ckpt)[0])[0]
print(f'Using checkpoint {b_ckpt}')
model = torch.load(b_ckpt, map_location='cpu')
device = torch.device('cpu' if args.gpu == -1 else f'cuda:{args.gpu}')
model.to(device)
model.eval()
# load data
_, _, test_set = create_dataset(config['dataset'])
test_loader = create_dataloader(test_set, config['dataloader'])
# save path
if args.save_dir is None:
save_dir = os.path.join(ckpt_dir, 'results')
else:
save_dir = args.save_dir
ref_save_dir = os.path.join(save_dir, 'references')
cand_save_dir = os.path.join(save_dir, 'candidates')
for directory in [ref_save_dir, cand_save_dir]:
if not os.path.exists(directory):
os.makedirs(directory)
fout = open(os.path.join(save_dir, 'results.jsonl'), 'w')
item_idx = 0
# multiprocessing
pool = Pool(args.n_cpu)
n_samples = config.get('n_samples', 1)
pbar = tqdm(total=n_samples * len(test_loader))
for n in range(n_samples):
item_idx = 0
with torch.no_grad():
for batch in test_loader:
batch = to_device(batch, device)
batch_X, batch_S, batch_pmetric = generate_wrapper(model, deepcopy(config.get('sample_opt', {})))(batch)
# parallel
inputs = []
for X, S, pmetric in zip(batch_X, batch_S, batch_pmetric):
_id, ref_pdb, rec_chain, lig_chain = test_set.get_summary(item_idx)
# save temporary pickle file
x_pkl_file = os.path.join(save_dir, _id + f'_gen_{n}_X.pkl')
pkl.dump(X, open(x_pkl_file, 'wb'))
s_pkl_file = os.path.join(save_dir, _id + f'_gen_{n}_S.pkl')
pkl.dump(S, open(s_pkl_file, 'wb'))
pmetric_pkl_file = os.path.join(save_dir, _id + f'_gen_{n}_pmetric.pkl')
pkl.dump(pmetric, open(pmetric_pkl_file, 'wb'))
inputs.append((
_id, n,
x_pkl_file, s_pkl_file, pmetric_pkl_file,
ref_pdb, rec_chain, lig_chain, ref_save_dir, cand_save_dir,
seq_only, struct_only, backbone_only
))
item_idx += 1
results = pool.starmap(save_data, inputs)
for result in results:
fout.write(json.dumps(result) + '\n')
pbar.update(1)
fout.close()
def parse():
parser = argparse.ArgumentParser(description='Generate peptides given epitopes')
parser.add_argument('--config', type=str, required=True, help='Path to the test configuration')
parser.add_argument('--ckpt', type=str, required=True, help='Path to checkpoint')
parser.add_argument('--save_dir', type=str, default=None, help='Directory to save generated peptides')
parser.add_argument('--gpu', type=int, default=0, help='GPU to use, -1 for cpu')
parser.add_argument('--n_cpu', type=int, default=4, help='Number of CPU to use (for parallelly saving the generated results)')
return parser.parse_known_args()
if __name__ == '__main__':
args, opt_args = parse()
print_log(f'Overwritting args: {opt_args}')
setup_seed(12)
main(args, opt_args)