-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathmetric.py
133 lines (115 loc) · 5.56 KB
/
metric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
from sklearn.metrics import normalized_mutual_info_score, adjusted_rand_score, accuracy_score
from sklearn.cluster import KMeans
from scipy.optimize import linear_sum_assignment
from torch.utils.data import DataLoader
import numpy as np
import torch
def cluster_acc(y_true, y_pred):
y_true = y_true.astype(np.int64)
assert y_pred.size == y_true.size
D = max(y_pred.max(), y_true.max()) + 1
w = np.zeros((D, D), dtype=np.int64)
for i in range(y_pred.size):
w[y_pred[i], y_true[i]] += 1
u = linear_sum_assignment(w.max() - w)
ind = np.concatenate([u[0].reshape(u[0].shape[0], 1), u[1].reshape([u[0].shape[0], 1])], axis=1)
return sum([w[i, j] for i, j in ind]) * 1.0 / y_pred.size
def purity(y_true, y_pred):
y_voted_labels = np.zeros(y_true.shape)
labels = np.unique(y_true)
ordered_labels = np.arange(labels.shape[0])
for k in range(labels.shape[0]):
y_true[y_true == labels[k]] = ordered_labels[k]
labels = np.unique(y_true)
bins = np.concatenate((labels, [np.max(labels)+1]), axis=0)
for cluster in np.unique(y_pred):
hist, _ = np.histogram(y_true[y_pred == cluster], bins=bins)
winner = np.argmax(hist)
y_voted_labels[y_pred == cluster] = winner
return accuracy_score(y_true, y_voted_labels)
def evaluate(label, pred):
nmi = normalized_mutual_info_score(label, pred)
ari = adjusted_rand_score(label, pred)
acc = cluster_acc(label, pred)
pur = purity(label, pred)
return nmi, ari, acc, pur
def inference(loader, model, device, view, data_size):
"""
:return:
total_pred: prediction among all modalities
pred_vectors: predictions of each modality, list
labels_vector: true label
Hs: high-level features
Zs: low-level features
"""
model.eval()
soft_vector = []
pred_vectors = []
Hs = []
Zs = []
for v in range(view):
pred_vectors.append([])
Hs.append([])
Zs.append([])
labels_vector = []
for step, (xs, y, _) in enumerate(loader):
for v in range(view):
xs[v] = xs[v].to(device)
with torch.no_grad():
qs, preds = model.forward_cluster(xs)
hs, _, _, zs = model.forward(xs)
q = sum(qs)/view
for v in range(view):
hs[v] = hs[v].detach()
zs[v] = zs[v].detach()
preds[v] = preds[v].detach()
pred_vectors[v].extend(preds[v].cpu().detach().numpy())
Hs[v].extend(hs[v].cpu().detach().numpy())
Zs[v].extend(zs[v].cpu().detach().numpy())
q = q.detach()
soft_vector.extend(q.cpu().detach().numpy())
labels_vector.extend(y.numpy())
labels_vector = np.array(labels_vector).reshape(data_size)
total_pred = np.argmax(np.array(soft_vector), axis=1)
for v in range(view):
Hs[v] = np.array(Hs[v])
Zs[v] = np.array(Zs[v])
pred_vectors[v] = np.array(pred_vectors[v])
return total_pred, pred_vectors, Hs, labels_vector, Zs
def valid(model, device, dataset, view, data_size, class_num, eval_h=False):
test_loader = DataLoader(
dataset,
batch_size=256,
shuffle=False,
)
total_pred, pred_vectors, high_level_vectors, labels_vector, low_level_vectors = inference(test_loader, model, device, view, data_size)
if eval_h:
print("Clustering results on low-level features of each view:")
for v in range(view):
kmeans = KMeans(n_clusters=class_num, n_init=100)
y_pred = kmeans.fit_predict(low_level_vectors[v])
nmi, ari, acc, pur = evaluate(labels_vector, y_pred)
print('ACC{} = {:.4f} NMI{} = {:.4f} ARI{} = {:.4f} PUR{}={:.4f}'.format(v + 1, acc,
v + 1, nmi,
v + 1, ari,
v + 1, pur))
print("Clustering results on high-level features of each view:")
for v in range(view):
kmeans = KMeans(n_clusters=class_num, n_init=100)
y_pred = kmeans.fit_predict(high_level_vectors[v])
nmi, ari, acc, pur = evaluate(labels_vector, y_pred)
print('ACC{} = {:.4f} NMI{} = {:.4f} ARI{} = {:.4f} PUR{}={:.4f}'.format(v + 1, acc,
v + 1, nmi,
v + 1, ari,
v + 1, pur))
print("Clustering results on cluster assignments of each view:")
for v in range(view):
nmi, ari, acc, pur = evaluate(labels_vector, pred_vectors[v])
print('ACC{} = {:.4f} NMI{} = {:.4f} ARI{} = {:.4f} PUR{}={:.4f}'.format(v+1, acc,
v+1, nmi,
v+1, ari,
v+1, pur))
print("Clustering results on semantic labels: " + str(labels_vector.shape[0]))
nmi, ari, acc, pur = evaluate(labels_vector, total_pred)
print('ACC = {:.4f} NMI = {:.4f} ARI = {:.4f} PUR={:.4f}'.format(acc, nmi, ari, pur))
return acc, nmi, pur