|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# IDCCs traitées et non traitées pour les pages `contributions`\n", |
| 8 | + "\n", |
| 9 | + "Dans cette exploration, le but est de récupérer pour chaque contribution générique, la liste des IDCCs sélectionnés" |
| 10 | + ] |
| 11 | + }, |
| 12 | + { |
| 13 | + "cell_type": "markdown", |
| 14 | + "metadata": {}, |
| 15 | + "source": [ |
| 16 | + "## 1. Chargement des librairies" |
| 17 | + ] |
| 18 | + }, |
| 19 | + { |
| 20 | + "cell_type": "code", |
| 21 | + "execution_count": null, |
| 22 | + "metadata": {}, |
| 23 | + "outputs": [], |
| 24 | + "source": [ |
| 25 | + "import pandas as pd\n", |
| 26 | + "from src.elasticsearch_connector import ElasticsearchConnector\n", |
| 27 | + "\n", |
| 28 | + "pd.set_option('display.max_columns', None)\n", |
| 29 | + "pd.set_option('display.max_rows', 5000)" |
| 30 | + ] |
| 31 | + }, |
| 32 | + { |
| 33 | + "cell_type": "markdown", |
| 34 | + "metadata": {}, |
| 35 | + "source": [ |
| 36 | + "## 2. Récupération des queries sur elasticsearch" |
| 37 | + ] |
| 38 | + }, |
| 39 | + { |
| 40 | + "cell_type": "code", |
| 41 | + "execution_count": null, |
| 42 | + "metadata": {}, |
| 43 | + "outputs": [], |
| 44 | + "source": [ |
| 45 | + "es_connector = ElasticsearchConnector(env='monolog')\n", |
| 46 | + "\n", |
| 47 | + "QUERY_LOG_CONTRIB = {\n", |
| 48 | + " \"query\": {\n", |
| 49 | + " \"bool\": { \n", |
| 50 | + " \"must\": [\n", |
| 51 | + " {\n", |
| 52 | + " \"prefix\": {\n", |
| 53 | + " \"url\": \"https://code.travail.gouv.fr/contribution\" \n", |
| 54 | + " }\n", |
| 55 | + " },\n", |
| 56 | + " {\n", |
| 57 | + " \"range\": {\n", |
| 58 | + " \"logfile\": {\n", |
| 59 | + " \"gte\": \"2024-05-01\",\n", |
| 60 | + " \"lte\": \"2024-08-01\"\n", |
| 61 | + " }\n", |
| 62 | + " }\n", |
| 63 | + " }\n", |
| 64 | + " ]\n", |
| 65 | + " }\n", |
| 66 | + " }\n", |
| 67 | + "}" |
| 68 | + ] |
| 69 | + }, |
| 70 | + { |
| 71 | + "cell_type": "code", |
| 72 | + "execution_count": null, |
| 73 | + "metadata": {}, |
| 74 | + "outputs": [], |
| 75 | + "source": [ |
| 76 | + "logs = es_connector.execute_query(QUERY_LOG_CONTRIB, \"logs-new\")" |
| 77 | + ] |
| 78 | + }, |
| 79 | + { |
| 80 | + "cell_type": "markdown", |
| 81 | + "metadata": {}, |
| 82 | + "source": [ |
| 83 | + "## 3. Vue d'ensemble" |
| 84 | + ] |
| 85 | + }, |
| 86 | + { |
| 87 | + "cell_type": "code", |
| 88 | + "execution_count": null, |
| 89 | + "metadata": {}, |
| 90 | + "outputs": [], |
| 91 | + "source": [ |
| 92 | + "# Récupération des logs des urls de contribution génériques\n", |
| 93 | + "logs_generic = logs[~logs[\"url\"].str.contains(r\"contribution/\\d{1,4}-\", regex=True)]" |
| 94 | + ] |
| 95 | + }, |
| 96 | + { |
| 97 | + "cell_type": "code", |
| 98 | + "execution_count": null, |
| 99 | + "metadata": {}, |
| 100 | + "outputs": [], |
| 101 | + "source": [ |
| 102 | + "logs_generic_cc_select_traitée_et_non_traitée = logs_generic[\n", |
| 103 | + " (logs_generic[\"type\"] == \"cc_select_non_traitée\") | \n", |
| 104 | + " (logs_generic[\"type\"] == \"cc_select_traitée\")\n", |
| 105 | + "]" |
| 106 | + ] |
| 107 | + }, |
| 108 | + { |
| 109 | + "cell_type": "code", |
| 110 | + "execution_count": null, |
| 111 | + "metadata": {}, |
| 112 | + "outputs": [], |
| 113 | + "source": [ |
| 114 | + "logs_generic_cc_select_traitée_et_non_traitée[\"cleaned_url\"] = logs_generic_cc_select_traitée_et_non_traitée[\"url\"].str.split('#').str[0].str.split('?').str[0]" |
| 115 | + ] |
| 116 | + }, |
| 117 | + { |
| 118 | + "cell_type": "code", |
| 119 | + "execution_count": null, |
| 120 | + "metadata": {}, |
| 121 | + "outputs": [], |
| 122 | + "source": [ |
| 123 | + "grouped = logs_generic_cc_select_traitée_et_non_traitée.groupby(['cleaned_url', 'idCc', 'type']).size().reset_index(name='count')" |
| 124 | + ] |
| 125 | + }, |
| 126 | + { |
| 127 | + "cell_type": "code", |
| 128 | + "execution_count": null, |
| 129 | + "metadata": {}, |
| 130 | + "outputs": [], |
| 131 | + "source": [ |
| 132 | + "# Pré-calcul des filtres\n", |
| 133 | + "traitée_filter = logs_generic_cc_select_traitée_et_non_traitée[\"type\"] == \"cc_select_traitée\"\n", |
| 134 | + "non_traitée_filter = logs_generic_cc_select_traitée_et_non_traitée[\"type\"] == \"cc_select_non_traitée\"\n", |
| 135 | + "\n", |
| 136 | + "# Calcul des totaux\n", |
| 137 | + "cc_select_traitée_total = logs_generic_cc_select_traitée_et_non_traitée[traitée_filter].shape[0]\n", |
| 138 | + "cc_select_non_traitée_total = logs_generic_cc_select_traitée_et_non_traitée[non_traitée_filter].shape[0]\n", |
| 139 | + "\n", |
| 140 | + "data = []\n", |
| 141 | + "\n", |
| 142 | + "for url, group in grouped.groupby('cleaned_url'):\n", |
| 143 | + " # Filtrer les logs pour l'url actuelle\n", |
| 144 | + " url_filter = logs_generic_cc_select_traitée_et_non_traitée[\"cleaned_url\"] == url\n", |
| 145 | + " nb_visits = logs_generic_cc_select_traitée_et_non_traitée[url_filter].shape[0]\n", |
| 146 | + " \n", |
| 147 | + " for _, row in group.iterrows():\n", |
| 148 | + " cc = row['idCc']\n", |
| 149 | + " type = row['type']\n", |
| 150 | + " count = row['count']\n", |
| 151 | + " \n", |
| 152 | + " data.append({\n", |
| 153 | + " 'url': url,\n", |
| 154 | + " 'cc': cc,\n", |
| 155 | + " 'type': type,\n", |
| 156 | + " 'nb_events': count,\n", |
| 157 | + " 'nb_visits': nb_visits,\n", |
| 158 | + " 'nb_events_sur_nb_visites': count / nb_visits * 100,\n", |
| 159 | + " 'cc_select_traitée_total': cc_select_traitée_total,\n", |
| 160 | + " 'cc_select_non_traitée_total': cc_select_non_traitée_total,\n", |
| 161 | + " })" |
| 162 | + ] |
| 163 | + }, |
| 164 | + { |
| 165 | + "cell_type": "code", |
| 166 | + "execution_count": null, |
| 167 | + "metadata": {}, |
| 168 | + "outputs": [], |
| 169 | + "source": [ |
| 170 | + "df = pd.DataFrame(data)" |
| 171 | + ] |
| 172 | + }, |
| 173 | + { |
| 174 | + "cell_type": "code", |
| 175 | + "execution_count": null, |
| 176 | + "metadata": {}, |
| 177 | + "outputs": [], |
| 178 | + "source": [ |
| 179 | + "df" |
| 180 | + ] |
| 181 | + }, |
| 182 | + { |
| 183 | + "cell_type": "code", |
| 184 | + "execution_count": null, |
| 185 | + "metadata": {}, |
| 186 | + "outputs": [], |
| 187 | + "source": [ |
| 188 | + "df.to_csv(\"contribution_generic_cc_select_traitée_et_non_traitée.csv\", index=False)" |
| 189 | + ] |
| 190 | + } |
| 191 | + ], |
| 192 | + "metadata": { |
| 193 | + "kernelspec": { |
| 194 | + "display_name": "Python 3 (ipykernel)", |
| 195 | + "language": "python", |
| 196 | + "name": "python3" |
| 197 | + }, |
| 198 | + "language_info": { |
| 199 | + "codemirror_mode": { |
| 200 | + "name": "ipython", |
| 201 | + "version": 3 |
| 202 | + }, |
| 203 | + "file_extension": ".py", |
| 204 | + "mimetype": "text/x-python", |
| 205 | + "name": "python", |
| 206 | + "nbconvert_exporter": "python", |
| 207 | + "pygments_lexer": "ipython3", |
| 208 | + "version": "3.9.6" |
| 209 | + } |
| 210 | + }, |
| 211 | + "nbformat": 4, |
| 212 | + "nbformat_minor": 4 |
| 213 | +} |
0 commit comments