-
Notifications
You must be signed in to change notification settings - Fork 118
/
Copy pathmain_att.py
176 lines (138 loc) · 5.16 KB
/
main_att.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# -*- coding: utf-8 -*-
from config import opt
import models
import dataset
import torch
from torch.utils.data import DataLoader
import torch.optim as optim
from utils import save_pr, now, eval_metric
def collate_fn(batch):
'''
custom for DataLoader
'''
data, label = zip(*batch)
return data, label
def test(**kwargs):
pass
def train(**kwargs):
kwargs.update({'model': 'PCNN_ATT'})
opt.parse(kwargs)
if opt.use_gpu:
torch.cuda.set_device(opt.gpu_id)
model = getattr(models, 'PCNN_ATT')(opt)
if opt.use_gpu:
model.cuda()
# loading data
DataModel = getattr(dataset, opt.data + 'Data')
train_data = DataModel(opt.data_root, train=True)
train_data_loader = DataLoader(train_data, opt.batch_size, shuffle=True, num_workers=opt.num_workers, collate_fn=collate_fn)
test_data = DataModel(opt.data_root, train=False)
test_data_loader = DataLoader(test_data, batch_size=opt.batch_size, shuffle=False, num_workers=opt.num_workers, collate_fn=collate_fn)
print('{} train data: {}; test data: {}'.format(now(), len(train_data), len(test_data)))
# criterion and optimizer
# criterion = nn.CrossEntropyLoss()
optimizer = optim.Adadelta(model.parameters(), rho=0.95, eps=1e-6)
# train
# max_pre = -1.0
# max_rec = -1.0
for epoch in range(opt.num_epochs):
total_loss = 0
for idx, (data, label_set) in enumerate(train_data_loader):
label = [l[0] for l in label_set]
optimizer.zero_grad()
model.batch_size = opt.batch_size
loss = model(data, label)
if opt.use_gpu:
label = torch.LongTensor(label).cuda()
else:
label = torch.LongTensor(label)
loss.backward()
optimizer.step()
total_loss += loss.item()
# if idx % 100 == 99:
# print('{}: Train iter: {} finish'.format(now(), idx))
if epoch > 2:
# true_y, pred_y, pred_p= predict(model, test_data_loader)
# all_pre, all_rec = eval_metric(true_y, pred_y, pred_p)
pred_res, p_num = predict_var(model, test_data_loader)
all_pre, all_rec = eval_metric_var(pred_res, p_num)
last_pre, last_rec = all_pre[-1], all_rec[-1]
if last_pre > 0.24 and last_rec > 0.24:
save_pr(opt.result_dir, model.model_name, epoch, all_pre, all_rec, opt=opt.print_opt)
print('{} Epoch {} save pr'.format(now(), epoch + 1))
print('{} Epoch {}/{}: train loss: {}; test precision: {}, test recall {}'.format(now(), epoch + 1, opt.num_epochs, total_loss, last_pre, last_rec))
else:
print('{} Epoch {}/{}: train loss: {};'.format(now(), epoch + 1, opt.num_epochs, total_loss))
def predict_var(model, test_data_loader):
'''
Apply the prediction method in Lin 2016
'''
model.eval()
res = []
true_y = []
for idx, (data, labels) in enumerate(test_data_loader):
out = model(data)
true_y.extend(labels)
if opt.use_gpu:
# out = map(lambda o: o.data.cpu().numpy().tolist(), out)
out = out.data.cpu().numpy().tolist()
else:
# out = map(lambda o: o.data.numpy().tolist(), out)
out = out.data.numpy().tolist()
for r in range(1, opt.rel_num):
for j in range(len(out[0])):
res.append([labels[j], r, out[r][j]])
# if idx % 100 == 99:
# print('{} Eval: iter {}'.format(now(), idx))
model.train()
positive_num = len([i for i in true_y if i[0] > 0])
return res, positive_num
def eval_metric_var(pred_res, p_num):
'''
Apply the evalation method in Lin 2016
'''
pred_res_sort = sorted(pred_res, key=lambda x: -x[2])
correct = 0.0
all_pre = []
all_rec = []
for i in range(2000):
true_y = pred_res_sort[i][0]
pred_y = pred_res_sort[i][1]
for j in true_y:
if pred_y == j:
correct += 1
break
precision = correct / (i + 1)
recall = correct / p_num
all_pre.append(precision)
all_rec.append(recall)
print("positive_num: {}; correct: {}".format(p_num, correct))
return all_pre, all_rec
def predict(model, test_data_loader):
'''
Apply the prediction method in Zeng 2015
'''
model.eval()
pred_y = []
true_y = []
pred_p = []
for idx, (data, labels) in enumerate(test_data_loader):
true_y.extend(labels)
out = model(data)
res = torch.max(out, 1)
if model.opt.use_gpu:
pred_y.extend(res[1].data.cpu().numpy().tolist())
pred_p.extend(res[0].data.cpu().numpy().tolist())
else:
pred_y.extend(res[1].data.numpy().tolist())
pred_p.extend(res[0].data.numpy().tolist())
# if idx % 100 == 99:
# print('{} Eval: iter {}'.format(now(), idx))
size = len(test_data_loader.dataset)
assert len(pred_y) == size and len(true_y) == size
assert len(pred_y) == len(pred_p)
model.train()
return true_y, pred_y, pred_p
if __name__ == "__main__":
import fire
fire.Fire()