-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcustom_faster_rcnn_resnet_v1_feature_extractor.py
186 lines (155 loc) · 7.7 KB
/
custom_faster_rcnn_resnet_v1_feature_extractor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# -*- coding: utf-8 -*-
"""
Created on Thu Nov 1 14:18:07 2018
@author: shirhe-lyh
ResNet V1 Faster R-CNN customized implementation.
"""
import tensorflow as tf
from tensorflow.contrib.slim import nets
from object_detection.meta_architectures import faster_rcnn_meta_arch
from object_detection.models import custom_resnet
slim = tf.contrib.slim
resnet_v1_block = nets.resnet_v1.resnet_v1_block
class CustomFasterRCNNResnetV1FeatureExtractor(
faster_rcnn_meta_arch.FasterRCNNFeatureExtractor):
"""Faster R-CNN ResNet v1 feature extractor customized implementation."""
def __init__(self,
architecture,
resnet_model,
is_training,
first_stage_features_stride,
batch_norm_trainable=False,
reuse_weights=None,
weight_decay=0.0):
"""Constructor.
Args:
architecture: Architecture name of the ResNet V1 model.
resnet_model: Definition of the ResNet V1 model.
is_training: See base class.
batch_norm_trainable: See base class.
first_stage_features_stride: See base class.
batch_norm_trainable: See base class.
reuse_weights: See base class.
weight_decay: See base class.
Raises:
ValueError: If `first_stage_features_stride` is not 8 or 16.
"""
if first_stage_features_stride != 8 and first_stage_features_stride !=16:
raise ValueError('`first_stage_features_stride` must be 8 or 16.')
self._architecture = architecture
self._resnet_model = resnet_model
super(CustomFasterRCNNResnetV1FeatureExtractor, self).__init__(
is_training, first_stage_features_stride, batch_norm_trainable,
reuse_weights, weight_decay)
def preprocess(self, resized_inputs):
"""Faster R-CNN ResNet V1 preprocessing.
Args:
resized_inputs: A [batch, height_in, width_in, channels] float32
tensor representing a batch of images with values between 0
and 255.0.
Returns:
preprocessed_inputs: A [batch, height_out, width_out, channels]
float32 tensor representing a batch of images.
"""
channel_means = [123.68, 116.779, 103.939]
return resized_inputs - [[channel_means]]
def _extract_proposal_features(self, preprocessed_inputs, scope):
"""Extracts first stage RPN features.
Args:
preprocessed_inputs: A [batch, height, width, channels] float32
tensor representing a batch of images.
scope: A scope name.
Returns:
rpn_feature_map: A tensor with shape [batch, height, width, depth].
activations: A dictionary mapping feature extractor tensor names
to tensors.
Raises:
InvalidArgumentError: If the spatial size of `preprocessed_inputs`
(height or width) is less than 33.
ValueError: If the created network is missing the required
activation.
"""
if len(preprocessed_inputs.get_shape().as_list()) != 4:
raise ValueError('`preprocessed_inputs` must be 4 dimensional, '
'got a tensor of shape %s' %
preprocessed_inputs.get_shape())
shape_assert = tf.Assert(
tf.logical_and(
tf.greater_equal(tf.shape(preprocessed_inputs)[1], 33),
tf.greater_equal(tf.shape(preprocessed_inputs)[2], 33)),
['image size must at least be 33 in both height and width.'])
with tf.control_dependencies([shape_assert]):
# Disables batchnorm for fine-tuning with smaller batch sizes.
# TODO(chensun): Figure out if it is needed when image
# batch size is bigger.
with slim.arg_scope(nets.resnet_utils.resnet_arg_scope(
batch_norm_epsilon=1e-5,
batch_norm_scale=True,
weight_decay=self._weight_decay)):
with tf.variable_scope(self._architecture,
reuse=self._reuse_weights) as var_scope:
_, activations = self._resnet_model(
preprocessed_inputs,
num_classes=None,
is_training=self._train_batch_norm,
global_pool=False,
output_stride=self._first_stage_features_stride,
spatial_squeeze=False,
scope=var_scope)
handle = scope + '/%s/block3' % self._architecture
return activations[handle], activations
def _extract_box_classifier_features(self, proposal_feature_maps, scope):
"""Extracts second stage box classifier features.
Args:
proposal_feature_maps: A 4-D float tensor with shape [batch_size *
self.max_num_proposals, crop_height, crop_width, depth]
representing the feature map croped to each proposal.
scope: A scope name (unused).
Returns:
proposal_classifier_features: A 4-D float tensor with shape
[batch_size * self.max_num_proposals, height, width, depth]
representing box classifier features for each proposal.
"""
with tf.variable_scope(self._architecture, reuse=self._reuse_weights):
with slim.arg_scope(nets.resnet_utils.resnet_arg_scope(
batch_norm_epsilon=1e-5,
batch_norm_scale=True,
weight_decay=self._weight_decay)):
with slim.arg_scope([slim.batch_norm],
is_training=self._train_batch_norm):
blocks = [
nets.resnet_utils.Block(
'block4', nets.resnet_v1.bottleneck,
[{'depth': 2048,
'depth_bottleneck': 512,
'stride': 1
}] * 3)
]
proposal_classifier_features = (
nets.resnet_utils.stack_blocks_dense(
proposal_feature_maps, blocks))
return proposal_classifier_features
class CustomFasterRCNNResnet20FeatureExtractor(
CustomFasterRCNNResnetV1FeatureExtractor):
"""Faster R-CNN ResNet V1 20 feature extractor implementation."""
def __init__(self,
is_training,
first_stage_features_stride,
batch_norm_trainable=False,
reuse_weights=None,
weight_decay=0.0):
"""Construtor.
Args:
is_training: See base class.
first_stage_features_stride: See base class.
batch_norm_trainable: See base class.
reuse_weights: See base class.
weight_decay: See base class.
Raises:
ValueError: If `first_stage_features_stride` is not 8 or 16, or
if `architecture` is not supported.
"""
super(CustomFasterRCNNResnet20FeatureExtractor, self).__init__(
'resnet_v1_20', custom_resnet.resnet_v1_20, is_training,
first_stage_features_stride, batch_norm_trainable,
reuse_weights, weight_decay)