|
159 | 159 | "\n",
|
160 | 160 | "<p class=pd>\n",
|
161 | 161 | "<b>Model</b>: GP regression<br>\n",
|
162 |
| - "<b>Objective</b>: 22.5774452129<br>\n", |
| 162 | + "<b>Objective</b>: 22.9717924697<br>\n", |
163 | 163 | "<b>Number of Parameters</b>: 3<br>\n",
|
164 | 164 | "<b>Number of Optimization Parameters</b>: 3<br>\n",
|
165 | 165 | "<b>Updates</b>: True<br>\n",
|
|
179 | 179 | "</table>"
|
180 | 180 | ],
|
181 | 181 | "text/plain": [
|
182 |
| - "<GPy.models.gp_regression.GPRegression at 0x7fd232dca750>" |
| 182 | + "<GPy.models.gp_regression.GPRegression at 0x7fd96a202690>" |
183 | 183 | ]
|
184 | 184 | },
|
185 | 185 | "metadata": {},
|
|
264 | 264 | "name": "stdout",
|
265 | 265 | "output_type": "stream",
|
266 | 266 | "text": [
|
267 |
| - "Optimization restart 1/10, f = -14.9522903397\n", |
268 |
| - "Optimization restart 2/10, f = -14.9522903397\n", |
269 |
| - "Optimization restart 3/10, f = -14.9522903391\n", |
270 |
| - "Optimization restart 4/10, f = -14.9522903397\n", |
271 |
| - "Optimization restart 5/10, f = -14.9522903396\n", |
272 |
| - "Optimization restart 6/10, f = -14.9522903397\n", |
273 |
| - "Optimization restart 7/10, f = -14.9522903397\n", |
274 |
| - "Optimization restart 8/10, f = -14.9522903397\n", |
275 |
| - "Optimization restart 9/10, f = -14.9522903397\n", |
276 |
| - "Optimization restart 10/10, f = -14.9522903397\n" |
| 267 | + "Optimization restart 1/10, f = -15.1436482683\n", |
| 268 | + "Optimization restart 2/10, f = -15.1436482683\n", |
| 269 | + "Optimization restart 3/10, f = -15.1436482682\n", |
| 270 | + "Optimization restart 4/10, f = -15.1436482682\n", |
| 271 | + "Optimization restart 5/10, f = -15.1436482682\n", |
| 272 | + "Optimization restart 6/10, f = -15.1436482682\n", |
| 273 | + "Optimization restart 7/10, f = -15.1436482683\n", |
| 274 | + "Optimization restart 8/10, f = -15.1436482682\n", |
| 275 | + "Optimization restart 9/10, f = -15.1436482683\n", |
| 276 | + "Optimization restart 10/10, f = -15.1436482683\n" |
277 | 277 | ]
|
278 | 278 | },
|
279 | 279 | {
|
280 | 280 | "data": {
|
281 | 281 | "text/plain": [
|
282 |
| - "[<paramz.optimization.optimization.opt_lbfgsb at 0x7fd232e06390>,\n", |
283 |
| - " <paramz.optimization.optimization.opt_lbfgsb at 0x7fd232e32bd0>,\n", |
284 |
| - " <paramz.optimization.optimization.opt_lbfgsb at 0x7fd232e901d0>,\n", |
285 |
| - " <paramz.optimization.optimization.opt_lbfgsb at 0x7fd232e063d0>,\n", |
286 |
| - " <paramz.optimization.optimization.opt_lbfgsb at 0x7fd232dcaf10>,\n", |
287 |
| - " <paramz.optimization.optimization.opt_lbfgsb at 0x7fd232e328d0>,\n", |
288 |
| - " <paramz.optimization.optimization.opt_lbfgsb at 0x7fd232e32c90>,\n", |
289 |
| - " <paramz.optimization.optimization.opt_lbfgsb at 0x7fd232e32b90>,\n", |
290 |
| - " <paramz.optimization.optimization.opt_lbfgsb at 0x7fd232e32ad0>,\n", |
291 |
| - " <paramz.optimization.optimization.opt_lbfgsb at 0x7fd232e90210>,\n", |
292 |
| - " <paramz.optimization.optimization.opt_lbfgsb at 0x7fd232e32d10>]" |
| 282 | + "[<paramz.optimization.optimization.opt_lbfgsb at 0x7fd96a244210>,\n", |
| 283 | + " <paramz.optimization.optimization.opt_lbfgsb at 0x7fd96a388810>,\n", |
| 284 | + " <paramz.optimization.optimization.opt_lbfgsb at 0x7fd96a3b3250>,\n", |
| 285 | + " <paramz.optimization.optimization.opt_lbfgsb at 0x7fd96a244350>,\n", |
| 286 | + " <paramz.optimization.optimization.opt_lbfgsb at 0x7fd96a388b90>,\n", |
| 287 | + " <paramz.optimization.optimization.opt_lbfgsb at 0x7fd96a388c10>,\n", |
| 288 | + " <paramz.optimization.optimization.opt_lbfgsb at 0x7fd96a388850>,\n", |
| 289 | + " <paramz.optimization.optimization.opt_lbfgsb at 0x7fd96a388c50>,\n", |
| 290 | + " <paramz.optimization.optimization.opt_lbfgsb at 0x7fd96a388c90>,\n", |
| 291 | + " <paramz.optimization.optimization.opt_lbfgsb at 0x7fd96a202e90>,\n", |
| 292 | + " <paramz.optimization.optimization.opt_lbfgsb at 0x7fd96a388ad0>]" |
293 | 293 | ]
|
294 | 294 | },
|
295 | 295 | "execution_count": 11,
|
|
330 | 330 | "\n",
|
331 | 331 | "<p class=pd>\n",
|
332 | 332 | "<b>Model</b>: GP regression<br>\n",
|
333 |
| - "<b>Objective</b>: -14.9522903397<br>\n", |
| 333 | + "<b>Objective</b>: -15.1436482683<br>\n", |
334 | 334 | "<b>Number of Parameters</b>: 3<br>\n",
|
335 | 335 | "<b>Number of Optimization Parameters</b>: 3<br>\n",
|
336 | 336 | "<b>Updates</b>: True<br>\n",
|
|
344 | 344 | ".tg .tg-right{font-family:\"Courier New\", Courier, monospace !important;font-weight:normal;text-align:right;}\n",
|
345 | 345 | "</style>\n",
|
346 | 346 | "<table class=\"tg\"><tr><th><b> GP_regression. </b></th><th><b> value</b></th><th><b>constraints</b></th><th><b>priors</b></th></tr>\n",
|
347 |
| - "<tr><td class=tg-left> rbf.variance </td><td class=tg-right> 0.559999766514</td><td class=tg-center> +ve </td><td class=tg-center> </td></tr>\n", |
348 |
| - "<tr><td class=tg-left> rbf.lengthscale </td><td class=tg-right> 1.45696406073</td><td class=tg-center> +ve </td><td class=tg-center> </td></tr>\n", |
349 |
| - "<tr><td class=tg-left> Gaussian_noise.variance</td><td class=tg-right>0.00275791997688</td><td class=tg-center> +ve </td><td class=tg-center> </td></tr>\n", |
| 347 | + "<tr><td class=tg-left> rbf.variance </td><td class=tg-right> 1.35354271667</td><td class=tg-center> +ve </td><td class=tg-center> </td></tr>\n", |
| 348 | + "<tr><td class=tg-left> rbf.lengthscale </td><td class=tg-right> 1.94630136743</td><td class=tg-center> +ve </td><td class=tg-center> </td></tr>\n", |
| 349 | + "<tr><td class=tg-left> Gaussian_noise.variance</td><td class=tg-right>0.00248112830273</td><td class=tg-center> +ve </td><td class=tg-center> </td></tr>\n", |
350 | 350 | "</table>"
|
351 | 351 | ],
|
352 | 352 | "text/plain": [
|
353 |
| - "<GPy.models.gp_regression.GPRegression at 0x7fd232dca750>" |
| 353 | + "<GPy.models.gp_regression.GPRegression at 0x7fd96a202690>" |
354 | 354 | ]
|
355 | 355 | },
|
356 | 356 | "metadata": {},
|
|
413 | 413 | "\n",
|
414 | 414 | "<p class=pd>\n",
|
415 | 415 | "<b>Model</b>: GP regression<br>\n",
|
416 |
| - "<b>Objective</b>: -14.9522903397<br>\n", |
| 416 | + "<b>Objective</b>: -15.1436482683<br>\n", |
417 | 417 | "<b>Number of Parameters</b>: 3<br>\n",
|
418 | 418 | "<b>Number of Optimization Parameters</b>: 3<br>\n",
|
419 | 419 | "<b>Updates</b>: True<br>\n",
|
|
427 | 427 | ".tg .tg-right{font-family:\"Courier New\", Courier, monospace !important;font-weight:normal;text-align:right;}\n",
|
428 | 428 | "</style>\n",
|
429 | 429 | "<table class=\"tg\"><tr><th><b> GP_regression. </b></th><th><b> value</b></th><th><b>constraints</b></th><th><b>priors</b></th></tr>\n",
|
430 |
| - "<tr><td class=tg-left> rbf.variance </td><td class=tg-right> 0.559999766514</td><td class=tg-center> +ve </td><td class=tg-center> </td></tr>\n", |
431 |
| - "<tr><td class=tg-left> rbf.lengthscale </td><td class=tg-right> 1.45696406073</td><td class=tg-center> +ve </td><td class=tg-center> </td></tr>\n", |
432 |
| - "<tr><td class=tg-left> Gaussian_noise.variance</td><td class=tg-right>0.00275791997688</td><td class=tg-center> +ve </td><td class=tg-center> </td></tr>\n", |
| 430 | + "<tr><td class=tg-left> rbf.variance </td><td class=tg-right> 1.35354271667</td><td class=tg-center> +ve </td><td class=tg-center> </td></tr>\n", |
| 431 | + "<tr><td class=tg-left> rbf.lengthscale </td><td class=tg-right> 1.94630136743</td><td class=tg-center> +ve </td><td class=tg-center> </td></tr>\n", |
| 432 | + "<tr><td class=tg-left> Gaussian_noise.variance</td><td class=tg-right>0.00248112830273</td><td class=tg-center> +ve </td><td class=tg-center> </td></tr>\n", |
433 | 433 | "</table>"
|
434 | 434 | ],
|
435 | 435 | "text/plain": [
|
436 |
| - "<GPy.models.gp_regression.GPRegression at 0x7fd232dca750>" |
| 436 | + "<GPy.models.gp_regression.GPRegression at 0x7fd96a202690>" |
437 | 437 | ]
|
438 | 438 | },
|
439 | 439 | "metadata": {},
|
|
518 | 518 | "\n",
|
519 | 519 | "<p class=pd>\n",
|
520 | 520 | "<b>Model</b>: GP regression<br>\n",
|
521 |
| - "<b>Objective</b>: -25.8853039459<br>\n", |
| 521 | + "<b>Objective</b>: -24.7900663215<br>\n", |
522 | 522 | "<b>Number of Parameters</b>: 5<br>\n",
|
523 | 523 | "<b>Number of Optimization Parameters</b>: 5<br>\n",
|
524 | 524 | "<b>Updates</b>: True<br>\n",
|
|
532 | 532 | ".tg .tg-right{font-family:\"Courier New\", Courier, monospace !important;font-weight:normal;text-align:right;}\n",
|
533 | 533 | "</style>\n",
|
534 | 534 | "<table class=\"tg\"><tr><th><b> GP_regression. </b></th><th><b> value</b></th><th><b>constraints</b></th><th><b>priors</b></th></tr>\n",
|
535 |
| - "<tr><td class=tg-left> sum.Mat52.variance </td><td class=tg-right> 0.313961135834</td><td class=tg-center> +ve </td><td class=tg-center> </td></tr>\n", |
| 535 | + "<tr><td class=tg-left> sum.Mat52.variance </td><td class=tg-right> 0.361421808902</td><td class=tg-center> +ve </td><td class=tg-center> </td></tr>\n", |
536 | 536 | "<tr><td class=tg-left> sum.Mat52.lengthscale </td><td class=tg-right> (2,)</td><td class=tg-center> +ve </td><td class=tg-center> </td></tr>\n",
|
537 |
| - "<tr><td class=tg-left> sum.white.variance </td><td class=tg-right>0.000921807350829</td><td class=tg-center> +ve </td><td class=tg-center> </td></tr>\n", |
538 |
| - "<tr><td class=tg-left> Gaussian_noise.variance</td><td class=tg-right>0.000921807350829</td><td class=tg-center> +ve </td><td class=tg-center> </td></tr>\n", |
| 537 | + "<tr><td class=tg-left> sum.white.variance </td><td class=tg-right>0.000644606566433</td><td class=tg-center> +ve </td><td class=tg-center> </td></tr>\n", |
| 538 | + "<tr><td class=tg-left> Gaussian_noise.variance</td><td class=tg-right>0.000644606566433</td><td class=tg-center> +ve </td><td class=tg-center> </td></tr>\n", |
539 | 539 | "</table>"
|
540 | 540 | ],
|
541 | 541 | "text/plain": [
|
542 |
| - "<GPy.models.gp_regression.GPRegression at 0x7fd232e4bf50>" |
| 542 | + "<GPy.models.gp_regression.GPRegression at 0x7fd96a278e90>" |
543 | 543 | ]
|
544 | 544 | },
|
545 | 545 | "metadata": {},
|
|
575 | 575 | "cell_type": "markdown",
|
576 | 576 | "metadata": {},
|
577 | 577 | "source": [
|
578 |
| - "##Plotting slices\n", |
| 578 | + "## Plotting slices\n", |
579 | 579 | "To see the uncertaintly associated with the above predictions, we can plot slices through the surface. this is done by passing the optional `fixed_inputs` argument to the plot function. `fixed_inputs` is a list of tuples containing which of the inputs to fix, and to which value.\n",
|
580 | 580 | "\n",
|
581 | 581 | "To get horixontal slices of the above GP, we'll fix second (index 1) input to -1, 0, and 1.5:"
|
|
0 commit comments