-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPSO LPQ Image Features.m
276 lines (257 loc) · 8.07 KB
/
PSO LPQ Image Features.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
%% PSO-LPQ Image Features - Created in 22 Jan 2022 by Seyed Muhammad Hossein Mousavi
% This code extracts Local Phase Quantization (LPQ) features out of 100
% samples of images in 10 classes. LPQ features are in the family of frequency based features.
% Then desired number of PSO features
% will be selected out of extracted LPQ features which have highest
% impact. Actually, you can select n strongest features. Results show,
% however number of selected features goes down, but recognition accuracy
% is almost intact. 'nf' is number of selected features by PSO. Images are
% stores in 'data' folder.
% ------------------------------------------------
% Feel free to contact me if you find any problem using the code:
% Author: SeyedMuhammadHosseinMousavi
% My Email: [email protected]
% My Google Scholar: https://scholar.google.com/citations?user=PtvQvAQAAAAJ&hl=en
% My GitHub: https://github.com/SeyedMuhammadHosseinMousavi?tab=repositories
% My ORCID: https://orcid.org/0000-0001-6906-2152
% My Scopus: https://www.scopus.com/authid/detail.uri?authorId=57193122985
% My MathWorks: https://www.mathworks.com/matlabcentral/profile/authors/9763916#
% my RG: https://www.researchgate.net/profile/Seyed-Mousavi-17
% ------------------------------------------------
% Hope it help you, enjoy the code and wish me luck :)
%% Making Things Ready !!!
clc;
clear;
warning('off');
%% LPQ Feature Extraction
% Read input images
path='data';
fileinfo = dir(fullfile(path,'*.jpg'));
filesnumber=size(fileinfo);
for i = 1 : filesnumber(1,1)
images{i} = imread(fullfile(path,fileinfo(i).name));
disp(['Loading image No : ' num2str(i) ]);
end;
% Color to Gray Conversion
for i = 1 : filesnumber(1,1)
gray{i}=rgb2gray(images{i});
disp(['To Gray : ' num2str(i) ]);
end;
% Contrast Adjustment
for i = 1 : filesnumber(1,1)
adjusted2{i}=imadjust(gray{i});
disp(['Contrast Adjust : ' num2str(i) ]);
end;
% Resize Image
for i = 1 : filesnumber(1,1)
resized2{i}=imresize(adjusted2{i}, [256 256]);
disp(['Image Resized : ' num2str(i) ]);
end;
%% LPQ Features
clear LPQ_tmp;
clear LPQ_Features;
winsize=9;
for i = 1 : filesnumber(1,1)
LPQ_tmp{i}=lpq(resized2{i},winsize);
disp(['Extract LPQ : ' num2str(i) ]);
end;
for i = 1 : filesnumber(1,1)
LPQ_Features(i,:)=LPQ_tmp{i};
end;
%% Labeling for Classification
sizefinal=size(LPQ_Features);
sizefinal=sizefinal(1,2);
%
LPQ_Features(1:10,sizefinal+1)=1;
LPQ_Features(11:20,sizefinal+1)=2;
LPQ_Features(21:30,sizefinal+1)=3;
LPQ_Features(31:40,sizefinal+1)=4;
LPQ_Features(41:50,sizefinal+1)=5;
LPQ_Features(51:60,sizefinal+1)=6;
LPQ_Features(61:70,sizefinal+1)=7;
LPQ_Features(71:80,sizefinal+1)=8;
LPQ_Features(81:90,sizefinal+1)=9;
LPQ_Features(91:100,sizefinal+1)=10;
%% PSO Feature Selection
% Data Preparation
x=LPQ_Features(:,1:end-1)';
t=LPQ_Features(:,end)';
data.x=x;
data.t=t;
data.nx=size(x,1);
data.nt=size(t,1);
data.nSample=size(x,2);
%% Number of Desired PSO Features
nf=50;
%% Cost Function
CostFunction=@(u) FeatureSelectionCost(u,nf,data);
% Number of Decision Variables
nVar=data.nx;
% Size of Decision Variables Matrix
VarSize=[1 nVar];
% Lower Bound of Variables
VarMin=0;
% Upper Bound of Variables
VarMax=1;
%% PSO Parameters
% Maximum Number of Iterations
MaxIt=10;
% Population Size (Swarm Size)
nPop=5;
% Constriction Coefficients
phi1=2.05;
phi2=2.05;
phi=phi1+phi2;
chi=2/(phi-2+sqrt(phi^2-4*phi));
% Inertia Weight
w=chi;
% Inertia Weight Damping Ratio
wdamp=1;
% Personal Learning Coefficient
c1=chi*phi1;
% Global Learning Coefficient
c2=chi*phi2;
% Velocity Limits
VelMax=0.1*(VarMax-VarMin);
VelMin=-VelMax;
%% Basics
empty_particle.Position=[];
empty_particle.Cost=[];
empty_particle.Out=[];
empty_particle.Velocity=[];
empty_particle.Best.Position=[];
empty_particle.Best.Cost=[];
empty_particle.Best.Out=[];
particle=repmat(empty_particle,nPop,1);
BestSol.Cost=inf;
for i=1:nPop
% Begin Position
particle(i).Position=unifrnd(VarMin,VarMax,VarSize);
% Begin Velocity
particle(i).Velocity=zeros(VarSize);
% Evaluation
[particle(i).Cost, particle(i).Out]=CostFunction(particle(i).Position);
% Update Personal Best
particle(i).Best.Position=particle(i).Position;
particle(i).Best.Cost=particle(i).Cost;
particle(i).Best.Out=particle(i).Out;
% Update Global Best
if particle(i).Best.Cost<BestSol.Cost
BestSol=particle(i).Best;
end
end
%
BestCost=zeros(MaxIt,1);
%% PSO Body Part
for it=1:MaxIt
for i=1:nPop
% Update Velocity
particle(i).Velocity = w*particle(i).Velocity ...
+c1*rand(VarSize).*(particle(i).Best.Position-particle(i).Position) ...
+c2*rand(VarSize).*(BestSol.Position-particle(i).Position);
% Apply Velocity Limits
particle(i).Velocity = max(particle(i).Velocity,VelMin);
particle(i).Velocity = min(particle(i).Velocity,VelMax);
% Update Position
particle(i).Position = particle(i).Position + particle(i).Velocity;
% Velocity Mirror Effect
IsOutside=(particle(i).Position<VarMin | particle(i).Position>VarMax);
particle(i).Velocity(IsOutside)=-particle(i).Velocity(IsOutside);
% Apply Position Limits
particle(i).Position = max(particle(i).Position,VarMin);
particle(i).Position = min(particle(i).Position,VarMax);
% Evaluation
[particle(i).Cost, particle(i).Out] = CostFunction(particle(i).Position);
% Update Personal Best
if particle(i).Cost<particle(i).Best.Cost
particle(i).Best.Position=particle(i).Position;
particle(i).Best.Cost=particle(i).Cost;
particle(i).Best.Out=particle(i).Out;
% Update Global Best
if particle(i).Best.Cost<BestSol.Cost
BestSol=particle(i).Best;
end
end
end
%
BestCost(it)=BestSol.Cost;
%
disp(['In Iteration ' num2str(it) ': PSO Fittest Value Is : ' num2str(BestCost(it))]);
w=w*wdamp;
end
%% Creating PSO + LPQ Features Matrix
% Extracting Data
RealData=data.x';
% Extracting Labels
RealLbl=data.t';
FinalFeaturesInd=BestSol.Out.S;
% Sort Features
FFI=sort(FinalFeaturesInd);
% Select Final Features
PSO_LPQ_Features=RealData(:,FFI);
% Adding Labels
PSO_LPQ_Features_Lbl=PSO_LPQ_Features;
PSO_LPQ_Features_Lbl(:,end+1)=RealLbl;
%% SVM For LPQ Features Only
sizenet=size(RealData);
sizenet=sizenet(1,1);
tsvm = templateSVM('KernelFunction','polynomial');
svmclass = fitcecoc(RealData,RealLbl,'Learners',tsvm);
svmerror = resubLoss(svmclass);
% Predict the labels of the training data.
predictedlpq = resubPredict(svmclass);
ct=0;
for i = 1 : sizenet(1,1)
if RealLbl(i) ~= predictedlpq(i)
ct=ct+1;
end;
end;
% Compute Accuracy
finsvm=ct*100/ sizenet;
LPQ_SVM=(100-finsvm)-svmerror;
%% SVM For PSO + LPQ Features
tsvm = templateSVM('KernelFunction','polynomial');
svmclass = fitcecoc(PSO_LPQ_Features,RealLbl,'Learners',tsvm);
svmerror = resubLoss(svmclass);
% Predict the labels of the training data.
predictedpso = resubPredict(svmclass);
ct=0;
for i = 1 : sizenet(1,1)
if RealLbl(i) ~= predictedpso(i)
ct=ct+1;
end;
end;
% Compute Accuracy
finsvm=ct*100/ sizenet;
PSO_LPQ_SVM=(100-finsvm)-svmerror;
%% Statistics
fprintf('The LPQ SVM Accuracy Is = %0.4f.\n',LPQ_SVM)
fprintf('The PSO + LPQ SVM Accuracy Is = %0.4f.\n',PSO_LPQ_SVM)
%% Confusion Matrix of Classification
figure
set(gcf, 'Position', [50, 100, 1300, 500])
subplot(1,2,1)
lpqsvm = confusionchart(RealLbl,predictedlpq, ...
'ColumnSummary','column-normalized', ...
'RowSummary','row-normalized');
lpqsvm.Title = (['LPQ SVM = ' num2str(LPQ_SVM) '%, Features #: ' num2str(sizefinal)]);
subplot(1,2,2)
psolpqsvm = confusionchart(RealLbl,predictedpso, ...
'ColumnSummary','column-normalized', ...
'RowSummary','row-normalized');
psolpqsvm.Title = (['PSO LPQ SVM = ' num2str(PSO_LPQ_SVM) '%, Features #: ' num2str(nf)]);
%% Plot PSO Training Stage
figure;
set(gcf, 'Position', [600, 300, 600, 300])
plot(BestCost,'-',...
'LineWidth',2,...
'MarkerSize',3,...
'MarkerEdgeColor','g',...
'Color',[0.9,0.2,0.1]);
title('PSO Algorithm Training')
xlabel('PSO Iteration','FontSize',10,...
'FontWeight','bold','Color','k');
ylabel('Fittest Value','FontSize',10,...
'FontWeight','bold','Color','k');
legend({'PSO Train'});
% I think That Is It !!!... :|