forked from NVIDIA/Megatron-LM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pretrain_gpt.py
234 lines (186 loc) · 7.7 KB
/
pretrain_gpt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
"""Pretrain GPT."""
import os
import torch
from torch import Tensor
from functools import partial
from typing import Union
from megatron import get_args
from megatron import print_rank_0
from megatron import get_timers
from megatron import get_tokenizer
from megatron.core import mpu, tensor_parallel
from megatron.core.enums import ModelType
from megatron.core.datasets.blended_megatron_dataset_builder import BlendedMegatronDatasetBuilder
from megatron.core.datasets.blended_megatron_dataset_config import GPTDatasetConfig
from megatron.core.datasets.gpt_dataset import GPTDataset
import megatron.model
from megatron.core.models.gpt import GPTModel
from megatron.training import pretrain
from megatron.core.transformer.spec_utils import import_module
from megatron.utils import (
get_ltor_masks_and_position_ids,
get_batch_on_this_cp_rank,
average_losses_across_data_parallel_group
)
from megatron.arguments import core_transformer_config_from_args
from megatron.core.models.gpt.gpt_layer_specs import (
get_gpt_layer_with_transformer_engine_spec,
gpt_layer_with_transformer_engine_spec_moe
)
def model_provider(pre_process=True, post_process=True) -> Union[GPTModel, megatron.model.GPTModel]:
"""Builds the model.
If you set the use_mcore_models to True, it will return the mcore GPT model and if not the legacy GPT model.
Args:
pre_process (bool, optional): Set to true if you need to compute embedings. Defaults to True.
post_process (bool, optional): Set to true if you need to want to compute output logits/loss. Defaults to True.
Returns:
Union[GPTModel, megatron.model.GPTModel]: The returned model
"""
args = get_args()
print_rank_0('building GPT model ...')
config = core_transformer_config_from_args(get_args())
if args.use_mcore_models:
if args.spec is not None:
transformer_layer_spec = import_module(args.spec)
else:
if args.num_experts is None:
transformer_layer_spec = get_gpt_layer_with_transformer_engine_spec()
else:
transformer_layer_spec = gpt_layer_with_transformer_engine_spec_moe
model = GPTModel(
config=config,
transformer_layer_spec=transformer_layer_spec,
vocab_size=args.padded_vocab_size,
max_sequence_length=args.max_position_embeddings,
pre_process=pre_process,
post_process=post_process,
fp16_lm_cross_entropy=args.fp16_lm_cross_entropy,
parallel_output=True,
share_embeddings_and_output_weights=not args.untie_embeddings_and_output_weights,
position_embedding_type=args.position_embedding_type,
rotary_percent=args.rotary_percent
)
else:
assert(args.context_parallel_size == 1), "Context parallelism is only supported with Megatron Core!"
model = megatron.model.GPTModel(
config,
num_tokentypes=0,
parallel_output=True,
pre_process=pre_process,
post_process=post_process
)
return model
def get_batch(data_iterator):
"""Generate a batch."""
# TODO: this is pretty hacky, find a better way
if (not mpu.is_pipeline_first_stage()) and (not mpu.is_pipeline_last_stage()):
return None, None, None, None, None
args = get_args()
tokenizer = get_tokenizer()
# Items and their type.
keys = ['text']
datatype = torch.int64
# Broadcast data.
if data_iterator is not None:
data = next(data_iterator)
else:
data = None
data_b = tensor_parallel.broadcast_data(keys, data, datatype)
# Unpack.
tokens_ = data_b['text'].long()
labels = tokens_[:, 1:].contiguous()
tokens = tokens_[:, :-1].contiguous()
# Get the masks and postition ids.
attention_mask, loss_mask, position_ids = get_ltor_masks_and_position_ids(
tokens,
tokenizer.eod,
args.reset_position_ids,
args.reset_attention_mask,
args.eod_mask_loss)
batch = {
'tokens': tokens,
'labels': labels,
'loss_mask': loss_mask,
'attention_mask': attention_mask,
'position_ids': position_ids
}
# slice batch along sequence dimension for context parallelism
batch = get_batch_on_this_cp_rank(batch)
return batch.values()
def loss_func(loss_mask: Tensor, output_tensor: Tensor):
"""Loss function.
Args:
loss_mask (Tensor): Used to mask out some portions of the loss
output_tensor (Tensor): The tensor with the losses
"""
args = get_args()
losses = output_tensor.float()
loss_mask = loss_mask.view(-1).float()
if args.context_parallel_size > 1:
loss = torch.cat([torch.sum(losses.view(-1) * loss_mask).view(1), loss_mask.sum().view(1)])
torch.distributed.all_reduce(loss, group=mpu.get_context_parallel_group())
loss = loss[0] / loss[1]
else:
loss = torch.sum(losses.view(-1) * loss_mask) / loss_mask.sum()
# Check individual rank losses are not NaN prior to DP all-reduce.
if args.check_for_nan_in_loss_and_grad:
global_rank = torch.distributed.get_rank()
assert not loss.isnan(), (
f'Rank {global_rank}: found NaN in local forward loss calculation. '
f'Device: {torch.cuda.current_device()}, node: {os.uname()[1]}'
)
# Reduce loss for logging.
averaged_loss = average_losses_across_data_parallel_group([loss])
return loss * args.context_parallel_size, {'lm loss': averaged_loss[0]}
def forward_step(data_iterator, model: GPTModel):
"""Forward training step.
Args:
data_iterator : Input data iterator
model (GPTModel): The GPT Model
"""
args = get_args()
timers = get_timers()
# Get the batch.
timers('batch-generator', log_level=2).start()
tokens, labels, loss_mask, attention_mask, position_ids = get_batch(
data_iterator)
timers('batch-generator').stop()
output_tensor = model(tokens, position_ids, attention_mask,
labels=labels)
return output_tensor, partial(loss_func, loss_mask)
def is_dataset_built_on_rank():
return (mpu.is_pipeline_first_stage() or mpu.is_pipeline_last_stage()) and mpu.get_tensor_model_parallel_rank() == 0
def core_gpt_dataset_config_from_args(args):
return GPTDatasetConfig(
is_built_on_rank=is_dataset_built_on_rank,
random_seed=args.seed,
sequence_length=args.seq_length,
blend=args.data_path,
blend_per_split=[args.train_data_path, args.valid_data_path, args.test_data_path],
split=args.split,
path_to_cache=args.data_cache_path,
return_document_ids=args.retro_return_doc_ids
)
def train_valid_test_datasets_provider(train_val_test_num_samples):
"""Build the train test and validation datasets.
Args:
train_val_test_num_samples : A list containing the number of samples in train test and validation.
"""
args = get_args()
print_rank_0("> building train, validation, and test datasets for GPT ...")
train_ds, valid_ds, test_ds = BlendedMegatronDatasetBuilder(
GPTDataset,
train_val_test_num_samples,
core_gpt_dataset_config_from_args(args)
).build()
print_rank_0("> finished creating GPT datasets ...")
return train_ds, valid_ds, test_ds
if __name__ == "__main__":
# Temporary for transition to core datasets
train_valid_test_datasets_provider.is_distributed = True
pretrain(train_valid_test_datasets_provider,
model_provider,
ModelType.encoder_or_decoder,
forward_step,
args_defaults={'tokenizer_type': 'GPT2BPETokenizer'})