-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataloader.py
98 lines (86 loc) · 4.26 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
from torch.utils.data import Dataset
import os
from skimage import io
from torchvision import transforms
from natsort import natsorted
import numpy as np
import json
from transformers import BertTokenizer
class Data(Dataset):
def __init__(self, frame_path, mask_path, label_path, frame_interval, first_n_frame_dynamics, task_type, model_type, max_seq_len, combined_scene_tasks=None):
self.data = {'scene_id': [], 'color': [], 'labels': [], 'shape': []}
with open(label_path, 'r') as f:
label_data = json.load(f)
f.close()
for scene_id in label_data.keys():
scene_data = label_data[scene_id]
num_objects = len(scene_data)
for i in range(num_objects):
self.data['scene_id'].append(scene_id)
scene_data_i = scene_data[i]
label = int(scene_data_i[2][0])
self.data['color'].append(scene_data_i[1])
self.data['labels'].append(label)
self.data['shape'].append(scene_data_i[0].split('.')[0])
self.frame_path = frame_path
self.mask_path = mask_path
self.transform = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((128, 128)),
transforms.ToTensor()
])
self.frame_interval = frame_interval
self.first_n_frame_dynamics = first_n_frame_dynamics
self.model_type = model_type
self.max_seq_len = max_seq_len
self.task_type = task_type
self.combined_scene_tasks = combined_scene_tasks
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
def __len__(self):
return len(self.data['scene_id'])
def __getitem__(self, idx):
scene_id = self.data['scene_id'][idx]
color = self.data['color'][idx]
shape = self.data['shape'][idx]
image_folder = os.path.join(self.frame_path, scene_id)
image_paths = os.listdir(image_folder)
image_paths = natsorted(image_paths)
final_image_paths = []
# frame interval
for i in range(0, len(image_paths), self.frame_interval):
final_image_paths.append(os.path.join(image_folder, image_paths[i]))
if self.model_type == 'baseline':
final_image_paths = final_image_paths[:self.first_n_frame_dynamics]
else:
final_image_paths = final_image_paths[:self.max_seq_len]
assert len(final_image_paths) > 0
images = [self.transform(io.imread(i)) for i in final_image_paths]
mask_folder = os.path.join(self.mask_path, scene_id)
mask_paths = os.listdir(mask_folder)
mask_paths = natsorted(mask_paths)
final_mask_paths = []
for i in range(0, len(mask_paths), self.frame_interval):
final_mask_paths.append(os.path.join(mask_folder, mask_paths[i]))
final_mask_paths = final_mask_paths[:self.first_n_frame_dynamics]
assert len(final_mask_paths) > 0
masks = [self.transform(io.imread(i + '/{}.jpg'.format(color))) for i in final_mask_paths]
if self.task_type == 'combined':
for k,v in self.combined_scene_tasks.items():
if int(scene_id) >= v[0] and int(scene_id) <= v[1]:
specific_task = k
break
if specific_task == 'contact':
query = "Does the {} {} get contacted by the red ball?".format(color, shape)
elif specific_task == 'contain':
query = "Is the {} {} contained within the containment holders?".format(color, shape)
elif specific_task == 'stability':
query = "Is the {} {} stable after it falls?".format(color, shape)
else:
if self.task_type == 'contact':
query = "Does the {} {} get contacted by the red ball?".format(color, shape)
elif self.task_type == 'contain':
query = "Is the {} {} contained within the containment holder?".format(color, shape)
elif self.task_type == 'stability':
query = "Is the {} {} stable after it falls?".format(color, shape)
encoded_query = self.tokenizer(query, padding='max_length', max_length=20, return_tensors='pt')
return images, masks, self.data['labels'][idx], encoded_query