forked from jchibane/srf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataloader.py
executable file
·308 lines (256 loc) · 13.1 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import data.load_DTU as DTU
from torch.utils.data import Dataset
import torch
import numpy as np
import os
import random
class SceneDataset(Dataset):
def __init__(self, cfg, mode):
self.cfg = cfg
self.num_workers = cfg.num_workers
self.mode = mode
self.load_mode = mode
self.data = None
self.batch_size = cfg.batch_size
# NOTE: Scale batch size by number of GPUs
if not cfg.no_parallel and cfg.n_gpus > 1:
if cfg.batch_size % cfg.n_gpus != 0:
raise ValueError(
'batch_size must be divisible by the number of GPUs')
self.batch_size /= torch.cuda.device_count()
self.num_reference_views = cfg.num_reference_views
self.fine_tune = cfg.fine_tune
self.render_factor = cfg.render_factor
# load a specific defined input from the data - needed for generating specific outputs
self.load_specific_input = None
# load specific reference views in specific order - not needed anymore?
self.load_specific_reference_poses = None
# load specific rendering pose - needed for generating novel view outputs
self.load_specific_rendering_pose = None
# load a reference views from a specific batch - needed to fine-tune on fixed inputs
# this is ignored when in training mode
self.load_fixed = True
# specifies which batch to load
# cfg.fixed_batch
# shuffle the loaded reference views - not needed anymore?
self.shuffle = False
# Method that defines a camera path: loads a list of poses
self.cam_path = None
# fine-tuning setting ------------------------------------------------------------------
if self.fine_tune:
print('Dataloader set in fine-tune mode. Fine-tuning:',
self.fine_tune)
self.load_specific_input = self.fine_tune
self.load_mode = 'test'
self.shuffle = True
if cfg.dataset_type == 'DTU':
self.data, self.H, self.W, self.focal, self.cc, self.camera_system = DTU.setup_DTU(
self.load_mode, cfg)
print(self.H, self.W, self.focal, self.cc, self.camera_system)
self.near = cfg.near
self.far = cfg.far
self.multi_world2cam = DTU.multi_world2cam_grid_sample_mat
self.multi_world2cam_torch = DTU.multi_world2cam_grid_sample_mat_torch
self.cam_path = DTU.load_cam_path()
# image generation setting -------------------------------------------------------------
if self.cfg.video or self.cfg.eval:
# disregarding the mode, if we are rendering video we want a fixed input for consistent outputs
self.shuffle = False
def __len__(self):
return len(self.data)
def proj_pts_to_ref(self, pts, ref_poses):
ref_pts = []
if self.cfg.dataset_type == 'DTU':
for ref_pose in ref_poses:
ref_pts.append(
[self.multi_world2cam(p.numpy(), ref_pose) for p in pts])
else:
for ref_pose in ref_poses:
ref_pts.append([
self.multi_world2cam(p.numpy(), self.H, self.W,
self.focal[0], ref_pose) for p in pts
])
# make into numpy array first
ref_pts = np.array(ref_pts)
return torch.Tensor(ref_pts) # (num_ref_views, rays, num_samples, 2)
def proj_pts_to_ref_torch(self, pts, ref_poses, device, focal=None):
ref_pts = torch.zeros(
(len(ref_poses), pts.shape[0], pts.shape[1], 2)).to(device)
if self.cfg.dataset_type == 'DTU':
for i, ref_pose in enumerate(ref_poses):
for j, p in enumerate(pts):
ref_pts[i, j] = self.multi_world2cam_torch(
p, ref_pose, device)
else:
for i, ref_pose in enumerate(ref_poses):
for j, p in enumerate(pts):
ref_pts[i, j] = self.multi_world2cam_torch(
p, self.H, self.W, focal[0], ref_pose, device)
return ref_pts # (num_ref_views, rays, num_samples, 2)
def __getitem__(self, idx):
if not self.cfg.no_ndc:
raise NotImplementedError(
'Non-direct facing camera not implemented!')
N_rand = self.cfg.N_rand
N_rays_test = self.cfg.N_rays_test
if self.cfg.dataset_type == 'DTU':
# for comparison of models we implement to load specific input/output data
if self.load_specific_input:
sample = self.load_specific_input
else:
sample = self.data[idx]
imgs, poses, poses_idx = DTU.load_scan_data(
sample, self.load_mode, self.num_reference_views + 1, self.cfg,
self.load_specific_reference_poses, self.load_fixed,
self.shuffle)
ref_images = imgs[:self.cfg.
num_reference_views] # (num_ref_views, H, W, 3) np.array, f32
ref_poses_idx = poses_idx[:self.cfg.
num_reference_views] # (num_reference_views) list, str
ref_poses = poses[:self.cfg.
num_reference_views] # (num_ref_views, 4, 4) np.array, f32
if self.load_specific_rendering_pose is not None:
target_pose = self.load_specific_rendering_pose
# elif self.fine_tune:
# # select on of the 10 input views as target
# sampled_target = np.random.randint(1, self.cfg.num_reference_views + 1)
# target = imgs[sampled_target] # (H, W, 3) np.array, f32
# target_pose = poses[sampled_target] # (4,4) np.array, f32
else:
target = imgs[-1] # (H, W, 3) np.array, f32
target_pose = poses[-1] # (4,4) np.array, f32
else:
raise
ref_cam_locs = np.array([ref_pose[:3, 3] for ref_pose in ref_poses
]) # (num_ref_views, 3)
rel_ref_cam_locs = ref_cam_locs - target_pose[:3,
3] # (num_ref_views, 3)
rays_o, rays_d = get_rays(self.H, self.W, self.focal, self.cc,
torch.Tensor(target_pose),
self.camera_system) # (H, W, 3), (H, W, 3)
output = {}
# create relative reference view features
self.ref_pose_features = [
ref_pose[:3, 3] - target_pose[:3, 3] for ref_pose in ref_poses
]
if self.mode == 'test':
rays_o = torch.reshape(
rays_o[::self.render_factor, ::self.render_factor], (-1, 3))
rays_d = torch.reshape(
rays_d[::self.render_factor, ::self.render_factor], (-1, 3))
pts, z_vals = self.sample_ray(
rays_o, rays_d
) # pts: (rays, num_samples, 3), z_vals: (rays, num_samples)
viewdirs = rays_d / torch.norm(rays_d, dim=-1, keepdim=True)
ref_pts = self.proj_pts_to_ref(pts, ref_poses)
if self.load_specific_rendering_pose is None:
output['complete'] = [[
rays_o[i:i + N_rays_test], rays_d[i:i + N_rays_test],
viewdirs[i:i + N_rays_test], pts[i:i + N_rays_test],
z_vals[i:i + N_rays_test], ref_pts[:, i:i + N_rays_test],
ref_images, ref_poses, rel_ref_cam_locs, target, sample,
self.focal
] for i in range(0, rays_o.shape[0], N_rays_test)]
else:
output['complete'] = [[
rays_o[i:i + N_rays_test], rays_d[i:i + N_rays_test],
viewdirs[i:i + N_rays_test], pts[i:i + N_rays_test],
z_vals[i:i + N_rays_test], ref_pts[:, i:i + N_rays_test],
ref_images, ref_poses, rel_ref_cam_locs, sample, self.focal
] for i in range(0, rays_o.shape[0], N_rays_test)]
return output
else:
dH = int(self.H // 2 * self.cfg.precrop_frac)
dW = int(self.W // 2 * self.cfg.precrop_frac)
coords_cropped = torch.stack(
torch.meshgrid(torch.linspace(self.H // 2 - dH,
self.H // 2 + dH - 1, 2 * dH),
torch.linspace(self.W // 2 - dW,
self.W // 2 + dW - 1, 2 * dW),
indexing='ij'), -1)
coords_full = torch.stack(
torch.meshgrid(torch.linspace(0, self.H - 1, self.H),
torch.linspace(0, self.W - 1, self.W),
indexing='ij'), -1) # (H, W, 2)
for (name, coords) in [('cropped', coords_cropped),
('complete', coords_full)]:
coords = torch.reshape(coords, [-1, 2]) # (H * W, 2)
select_inds = np.random.choice(coords.shape[0],
size=[N_rand],
replace=False) # (N_rand,)
select_coords = coords[select_inds].long() # (N_rand, 2)
rays_o_selected = rays_o[select_coords[:, 0],
select_coords[:, 1]] # (N_rand, 3)
rays_d_selected = rays_d[select_coords[:, 0],
select_coords[:, 1]] # (N_rand, 3)
target_s = target[select_coords[:, 0],
select_coords[:, 1]] # (N_rand, 3)
viewdirs = rays_d_selected / torch.norm(
rays_d_selected, dim=-1, keepdim=True)
# Sample points along a ray
pts, z_vals = self.sample_ray(rays_o_selected, rays_d_selected)
ref_pts = self.proj_pts_to_ref(pts, ref_poses)
output[name] = [
rays_o_selected, rays_d_selected, viewdirs, target_s, pts,
z_vals, ref_pts, ref_images, rel_ref_cam_locs, ref_poses,
self.focal
]
return output
def get_loader(self, shuffle=True, num_workers=None):
if num_workers is None:
num_workers = self.num_workers
if self.mode == 'test':
self.batch_size = 1
return torch.utils.data.DataLoader(self,
batch_size=self.batch_size,
num_workers=num_workers,
shuffle=shuffle,
worker_init_fn=self.worker_init_fn)
# enforce randomness
def worker_init_fn(self, worker_id):
random_data = os.urandom(4)
base_seed = int.from_bytes(random_data, byteorder="big")
np.random.seed(base_seed + worker_id)
random.seed(base_seed + worker_id)
torch.random.manual_seed(base_seed + worker_id)
def sample_ray(self, rays_o, rays_d):
N_samples = self.cfg.N_samples
N_rays = rays_o.shape[0]
near, far = self.near * torch.ones_like(
rays_d[..., :1]), self.far * torch.ones_like(rays_d[..., :1])
t_vals = torch.linspace(0., 1., steps=N_samples)
if not self.cfg.lindisp:
z_vals = near * (1. - t_vals) + far * (t_vals)
else:
z_vals = 1. / (1. / near * (1. - t_vals) + 1. / far * (t_vals))
z_vals = z_vals.expand([N_rays, N_samples])
if self.cfg.perturb > 0.:
# get intervals between samples
mids = .5 * (z_vals[..., 1:] + z_vals[..., :-1])
upper = torch.cat([mids, z_vals[..., -1:]], -1)
lower = torch.cat([z_vals[..., :1], mids], -1)
# stratified samples in those intervals
t_rand = torch.rand(z_vals.shape)
z_vals = lower + (upper - lower) * t_rand
pts = rays_o[..., None, :] + rays_d[..., None, :] * z_vals[
..., :, None] # [N_rays, N_samples, 3]
return pts, z_vals
def get_rays(H, W, focal, cc, c2w, camera_system):
# pytorch's meshgrid has indexing='ij'
i, j = torch.meshgrid(torch.linspace(0, W - 1, W),
torch.linspace(0, H - 1, H),
indexing='ij')
i = i.t()
j = j.t()
if camera_system == 'x_down_y_down_z_cam_dir':
dirs = torch.stack([(i - cc[0]) / focal[0], (j - cc[1]) / focal[1],
torch.ones_like(i)], -1)
if camera_system == 'x_down_y_up_z_neg_cam_dir':
dirs = torch.stack([(i - cc[0]) / focal[0], -(j - cc[1]) / focal[1],
-torch.ones_like(i)], -1)
# Rotate ray directions from camera frame to the world frame
# dot product, equals to: [c2w.dot(dir) for dir in dirs]
rays_d = torch.sum(dirs[..., np.newaxis, :] * c2w[:3, :3], -1)
# Translate camera frame's origin to the world frame. It is the origin of all rays.
rays_o = c2w[:3, -1].expand(rays_d.shape)
return rays_o, rays_d