-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathtestCooling.c
246 lines (209 loc) · 9.55 KB
/
testCooling.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
/*******************************************************************************
* This file is part of SWIFT.
* Copyright (C) 2015 Matthieu Schaller ([email protected]).
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
#include <config.h>
/* Local headers. */
#include "swift.h"
#if defined(CHEMISTRY_EAGLE) && defined(COOLING_EAGLE) && defined(GADGET2_SPH)
#include "../src/cooling/EAGLE/cooling_rates.h"
/*
* @brief Assign particle density and entropy corresponding to the
* hydrogen number density and internal energy specified.
*
* @param p Particle data structure
* @param xp extra particle structure
* @param us unit system struct
* @param cooling Cooling function data structure
* @param cosmo Cosmology data structure
* @param phys_const Physical constants data structure
* @param nh_cgs Hydrogen number density (cgs units)
* @param u Internal energy (cgs units)
* @param ti_current integertime to set cosmo quantities
*/
void set_quantities(struct part *restrict p, struct xpart *restrict xp,
const struct unit_system *restrict us,
const struct cooling_function_data *restrict cooling,
struct cosmology *restrict cosmo,
const struct phys_const *restrict phys_const, float nh_cgs,
double u_cgs, integertime_t ti_current) {
/* calculate density */
double hydrogen_number_density = nh_cgs / cooling->number_density_to_cgs;
p->rho = hydrogen_number_density * phys_const->const_proton_mass /
p->chemistry_data.metal_mass_fraction[chemistry_element_H];
/* update entropy based on internal energy */
float pressure = (u_cgs)*cooling->internal_energy_from_cgs * p->rho *
(hydro_gamma_minus_one);
p->entropy = pressure * (pow(p->rho, -hydro_gamma));
xp->entropy_full = p->entropy;
p->entropy_dt = 0.f;
}
/*
* @brief Tests cooling integration scheme by comparing EAGLE
* integration to subcycled explicit equation.
*/
int main(int argc, char **argv) {
// Declare relevant structs
struct swift_params *params = malloc(sizeof(struct swift_params));
struct unit_system us;
struct chemistry_global_data chem_data;
struct part p;
struct xpart xp;
struct phys_const phys_const;
struct hydro_props hydro_properties;
struct entropy_floor_properties floor_props;
struct pressure_floor_props pressure_floor;
struct cooling_function_data cooling;
struct cosmology cosmo;
char *parametersFileName = "./testCooling.yml";
float nh_cgs; // hydrogen number density
double u_cgs; // internal energy
const float seconds_per_year = 3.154e7;
/* Number of values to test for in redshift,
* hydrogen number density and internal energy */
const int n_z = 10;
const int n_nh = 10;
const int n_u = 10;
/* Number of subcycles and tolerance used to compare
* subcycled and implicit solution. Note, high value
* of tolerance due to mismatch between explicit and
* implicit solution for large timesteps */
const int n_subcycle = 1000;
const float integration_tolerance = 0.2;
/* Read the parameter file */
if (params == NULL) error("Error allocating memory for the parameter file.");
message("Reading runtime parameters from file '%s'", parametersFileName);
parser_read_file(parametersFileName, params);
/* Init units */
units_init_from_params(&us, params, "InternalUnitSystem");
phys_const_init(&us, params, &phys_const);
/* Init chemistry */
chemistry_init(params, &us, &phys_const, &chem_data);
chemistry_first_init_part(&phys_const, &us, &cosmo, &chem_data, &p, &xp);
chemistry_part_has_no_neighbours(&p, &xp, &chem_data, &cosmo);
chemistry_print(&chem_data);
/* Init cosmology */
cosmology_init(params, &us, &phys_const, &cosmo);
cosmology_print(&cosmo);
/* Init hydro_props */
hydro_props_init(&hydro_properties, &phys_const, &us, params);
/* Init entropy floor */
entropy_floor_init(&floor_props, &phys_const, &us, &hydro_properties, params);
/* Init the pressure floor */
pressure_floor_init(&pressure_floor, &phys_const, &us, &hydro_properties,
params);
/* Set dt */
const int timebin = 38;
float dt_cool, dt_therm;
/* Init cooling */
cooling_init(params, &us, &phys_const, &hydro_properties, &cooling);
cooling_print(&cooling);
cooling_update(&cosmo, &pressure_floor, &cooling, 0);
/* Cooling function needs to know the minimal energy. Set it to the lowest
* internal energy in the cooling table. */
hydro_properties.minimal_internal_energy =
exp(M_LN10 * cooling.Therm[0]) * cooling.internal_energy_from_cgs;
/* Calculate abundance ratios */
float *abundance_ratio;
abundance_ratio = malloc((chemistry_element_count + 2) * sizeof(float));
abundance_ratio_to_solar(&p, &cooling, abundance_ratio);
/* extract mass fractions, calculate table indices and offsets */
float XH = p.chemistry_data.metal_mass_fraction[chemistry_element_H];
float HeFrac =
p.chemistry_data.metal_mass_fraction[chemistry_element_He] /
(XH + p.chemistry_data.metal_mass_fraction[chemistry_element_He]);
int He_i;
float d_He;
get_index_1d(cooling.HeFrac, eagle_cooling_N_He_frac, HeFrac, &He_i, &d_He);
/* calculate spacing in nh and u */
const float log_u_min_cgs = 11, log_u_max_cgs = 17;
const float log_nh_min_cgs = -6, log_nh_max_cgs = 3;
const float delta_log_nh_cgs = (log_nh_max_cgs - log_nh_min_cgs) / n_nh;
const float delta_log_u_cgs = (log_u_max_cgs - log_u_min_cgs) / n_u;
/* Declare variables we will be checking */
double du_dt_implicit, du_dt_check;
integertime_t ti_current;
/* Loop over values of nh and u */
for (int nh_i = 0; nh_i < n_nh; nh_i++) {
nh_cgs = exp(M_LN10 * log_nh_min_cgs + delta_log_nh_cgs * nh_i);
for (int u_i = 0; u_i < n_u; u_i++) {
u_cgs = exp(M_LN10 * log_u_min_cgs + delta_log_u_cgs * u_i);
/* Loop over z */
for (int z_i = 0; z_i <= n_z; z_i++) {
ti_current = max_nr_timesteps / n_z * z_i + 1;
/* update nh, u, z */
cosmology_update(&cosmo, &phys_const, ti_current);
cooling_init(params, &us, &phys_const, &hydro_properties, &cooling);
cooling_update(&cosmo, &pressure_floor, &cooling, 0);
set_quantities(&p, &xp, &us, &cooling, &cosmo, &phys_const, nh_cgs,
u_cgs, ti_current);
/* Set dt */
const integertime_t ti_step = get_integer_timestep(timebin);
const integertime_t ti_begin =
get_integer_time_begin(ti_current - 1, timebin);
dt_cool =
cosmology_get_delta_time(&cosmo, ti_begin, ti_begin + ti_step);
dt_therm = cosmology_get_therm_kick_factor(&cosmo, ti_begin,
ti_begin + ti_step);
/* calculate subcycled solution */
for (int t_subcycle = 0; t_subcycle < n_subcycle; t_subcycle++) {
p.entropy_dt = 0;
cooling_cool_part(&phys_const, &us, &cosmo, &hydro_properties,
&floor_props, &pressure_floor, &cooling, &p, &xp,
dt_cool / n_subcycle, dt_therm / n_subcycle, 0.);
xp.entropy_full += p.entropy_dt * dt_therm / n_subcycle;
}
du_dt_check = hydro_get_physical_internal_energy_dt(&p, &cosmo);
/* reset quantities to nh, u, and z that we want to test */
cosmology_update(&cosmo, &phys_const, ti_current);
set_quantities(&p, &xp, &us, &cooling, &cosmo, &phys_const, nh_cgs,
u_cgs, ti_current);
/* compute implicit solution */
cooling_cool_part(&phys_const, &us, &cosmo, &hydro_properties,
&floor_props, &pressure_floor, &cooling, &p, &xp,
dt_cool, dt_therm, 0.);
du_dt_implicit = hydro_get_physical_internal_energy_dt(&p, &cosmo);
/* check if the two solutions are consistent */
if (fabs((du_dt_implicit - du_dt_check) / du_dt_check) >
integration_tolerance ||
(du_dt_check == 0.0 && du_dt_implicit != 0.0))
error(
"Solutions do not match. scale factor %.5e z %.5e nh_cgs %.5e "
"u_cgs %.5e dt (years) %.5e du cgs implicit %.5e reference %.5e "
"error %.5e",
cosmo.a, cosmo.z, nh_cgs, u_cgs,
dt_cool * units_cgs_conversion_factor(&us, UNIT_CONV_TIME) /
seconds_per_year,
du_dt_implicit *
units_cgs_conversion_factor(&us,
UNIT_CONV_ENERGY_PER_UNIT_MASS) *
dt_therm,
du_dt_check *
units_cgs_conversion_factor(&us,
UNIT_CONV_ENERGY_PER_UNIT_MASS) *
dt_therm,
fabs((du_dt_implicit - du_dt_check) / du_dt_check));
}
}
}
message("done explicit subcycling cooling test");
free(params);
return 0;
}
#else
int main(int argc, char **argv) { return 0; }
#endif