-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathtestActivePair.c
774 lines (661 loc) · 26.5 KB
/
testActivePair.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
/*******************************************************************************
* This file is part of SWIFT.
* Copyright (C) 2015 Matthieu Schaller ([email protected]).
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
#include <config.h>
/* Some standard headers. */
#include <fenv.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
/* Local headers. */
#include "swift.h"
#define NODE_ID 0
/* Typdef function pointer for interaction function. */
typedef void (*serial_interaction_func)(struct runner *, struct cell *,
struct cell *);
typedef void (*interaction_func)(struct runner *, struct cell *, struct cell *,
int, int);
typedef void (*init_func)(struct cell *, const struct cosmology *,
const struct hydro_props *,
const struct pressure_floor_props *);
typedef void (*finalise_func)(struct cell *, const struct cosmology *,
const struct gravity_props *);
/**
* @brief Constructs a cell and all of its particle in a valid state prior to
* a DOPAIR or DOSELF calcuation.
*
* @param n The cube root of the number of particles.
* @param offset The position of the cell offset from (0,0,0).
* @param size The cell size.
* @param h The smoothing length of the particles in units of the inter-particle
* separation.
* @param density The density of the fluid.
* @param partId The running counter of IDs.
* @param pert The perturbation to apply to the particles in the cell in units
* of the inter-particle separation.
* @param h_pert The perturbation to apply to the smoothing length.
* @param fraction_active The fraction of particles that should be active in the
* cell.
*/
struct cell *make_cell(size_t n, double *offset, double size, double h,
double density, long long *partId, double pert,
double h_pert, double fraction_active) {
const size_t count = n * n * n;
const double volume = size * size * size;
float h_max = 0.f;
float h_max_active = 0.f;
struct cell *cell = NULL;
if (posix_memalign((void **)&cell, cell_align, sizeof(struct cell)) != 0) {
error("Couldn't allocate the cell");
}
bzero(cell, sizeof(struct cell));
if (posix_memalign((void **)&cell->hydro.parts, part_align,
count * sizeof(struct part)) != 0) {
error("couldn't allocate particles, no. of particles: %d", (int)count);
}
bzero(cell->hydro.parts, count * sizeof(struct part));
if (posix_memalign((void **)&cell->hydro.xparts, part_align,
count * sizeof(struct xpart)) != 0) {
error("couldn't allocate x particles, no. of particles: %d", (int)count);
}
bzero(cell->hydro.xparts, count * sizeof(struct xpart));
/* Construct the parts */
struct part *part = cell->hydro.parts;
for (size_t x = 0; x < n; ++x) {
for (size_t y = 0; y < n; ++y) {
for (size_t z = 0; z < n; ++z) {
part->x[0] =
offset[0] +
size * (x + 0.5 + random_uniform(-0.5, 0.5) * pert) / (float)n;
part->x[1] =
offset[1] +
size * (y + 0.5 + random_uniform(-0.5, 0.5) * pert) / (float)n;
part->x[2] =
offset[2] +
size * (z + 0.5 + random_uniform(-0.5, 0.5) * pert) / (float)n;
part->v[0] = random_uniform(-0.05, 0.05);
part->v[1] = random_uniform(-0.05, 0.05);
part->v[2] = random_uniform(-0.05, 0.05);
if (h_pert)
part->h = size * h * random_uniform(1.f, h_pert) / (float)n;
else
part->h = size * h / (float)n;
h_max = fmaxf(h_max, part->h);
part->id = ++(*partId);
part->depth_h = 0;
/* Set the mass */
#if defined(GIZMO_MFV_SPH) || defined(GIZMO_MFM_SPH)
part->conserved.mass = density * volume / count;
#else
part->mass = density * volume / count;
#endif
/* Set the thermodynamic variable */
#if defined(GADGET2_SPH)
part->entropy = 1.f;
#elif defined(MINIMAL_SPH) || defined(HOPKINS_PU_SPH) || \
defined(HOPKINS_PU_SPH_MONAGHAN) || defined(ANARCHY_PU_SPH) || \
defined(SPHENIX_SPH) || defined(PHANTOM_SPH) || defined(GASOLINE_SPH)
part->u = 1.f;
#elif defined(HOPKINS_PE_SPH)
part->entropy = 1.f;
part->entropy_one_over_gamma = 1.f;
#elif defined(GIZMO_MFV_SPH) || defined(GIZMO_MFM_SPH)
part->conserved.energy = 1.f;
#endif
#if defined(GIZMO_MFV_SPH) || defined(GIZMO_MFM_SPH)
struct xpart dummy_xp;
hydro_first_init_part(part, &dummy_xp);
#endif
/* Set the time-bin */
if (random_uniform(0, 1.f) < fraction_active) {
part->time_bin = 1;
h_max_active = fmaxf(h_max_active, part->h);
} else {
part->time_bin = num_time_bins + 1;
}
#ifdef SWIFT_DEBUG_CHECKS
part->ti_drift = 8;
part->ti_kick = 8;
#endif
++part;
}
}
}
/* Cell properties */
cell->split = 0;
cell->depth = 0;
cell->hydro.h_max = h_max;
cell->hydro.h_max_active = h_max_active;
cell->hydro.count = count;
cell->hydro.dx_max_part = 0.;
cell->hydro.dx_max_sort = 0.;
cell->width[0] = size;
cell->width[1] = size;
cell->width[2] = size;
cell->dmin = size;
cell->loc[0] = offset[0];
cell->loc[1] = offset[1];
cell->loc[2] = offset[2];
cell->h_min_allowed = cell->dmin * 0.5 * (1. / kernel_gamma);
cell->h_max_allowed = cell->dmin * (1. / kernel_gamma);
cell->hydro.super = cell;
cell->hydro.ti_old_part = 8;
cell->hydro.ti_end_min = 8;
cell->nodeID = NODE_ID;
shuffle_particles(cell->hydro.parts, cell->hydro.count);
cell->hydro.sorted = 0;
cell->hydro.sort = NULL;
return cell;
}
void clean_up(struct cell *ci) {
cell_free_hydro_sorts(ci);
free(ci->hydro.parts);
free(ci->hydro.xparts);
free(ci);
}
/**
* @brief Initializes all particles field to be ready for a density calculation
*/
void zero_particle_fields_density(
struct cell *c, const struct cosmology *cosmo,
const struct hydro_props *hydro_props,
const struct pressure_floor_props *pressure_floor) {
for (int pid = 0; pid < c->hydro.count; pid++) {
#if defined(GIZMO_MFV_SPH) || defined(GIZMO_MFM_SPH)
c->hydro.parts[pid].geometry.wcorr = 1.0f;
#endif
hydro_init_part(&c->hydro.parts[pid], NULL);
adaptive_softening_init_part(&c->hydro.parts[pid]);
mhd_init_part(&c->hydro.parts[pid]);
}
}
/**
* @brief Initializes all particles field to be ready for a force calculation
*/
void zero_particle_fields_force(
struct cell *c, const struct cosmology *cosmo,
const struct hydro_props *hydro_props,
const struct pressure_floor_props *pressure_floor) {
for (int pid = 0; pid < c->hydro.count; pid++) {
struct part *p = &c->hydro.parts[pid];
struct xpart *xp = &c->hydro.xparts[pid];
/* Mimic the result of a density calculation */
#ifdef GADGET2_SPH
p->rho = 1.f;
p->density.rho_dh = 0.f;
p->density.wcount = 48.f / (kernel_norm * pow_dimension(p->h));
p->density.wcount_dh = 0.f;
p->density.rot_v[0] = 0.f;
p->density.rot_v[1] = 0.f;
p->density.rot_v[2] = 0.f;
p->density.div_v = 0.f;
#endif /* GADGET-2 */
#if defined(MINIMAL_SPH) || defined(SPHENIX_SPH) || defined(PHANTOM_SPH) || \
defined(GASOLINE_SPH)
p->rho = 1.f;
p->density.rho_dh = 0.f;
p->density.wcount = 48.f / (kernel_norm * pow_dimension(p->h));
p->density.wcount_dh = 0.f;
#if defined(MINIMAL_SPH)
p->force.v_sig = hydro_get_comoving_soundspeed(p);
#else
p->viscosity.v_sig = hydro_get_comoving_soundspeed(p);
#endif /* MINIMAL */
#endif /* MINIMAL, SPHENIX, PHANTOM, GASOLINE */
#ifdef HOPKINS_PE_SPH
p->rho = 1.f;
p->rho_bar = 1.f;
p->density.rho_dh = 0.f;
p->density.pressure_dh = 0.f;
p->density.wcount = 48.f / (kernel_norm * pow_dimension(p->h));
p->density.wcount_dh = 0.f;
#endif /* PRESSURE-ENTROPY */
#if defined(HOPKINS_PU_SPH) || defined(HOPKINS_PU_SPH_MONAGHAN) || \
defined(ANARCHY_PU_SPH)
p->rho = 1.f;
p->pressure_bar = 0.6666666;
p->density.rho_dh = 0.f;
p->density.pressure_bar_dh = 0.f;
p->density.wcount = 48.f / (kernel_norm * pow_dimension(p->h));
p->density.wcount_dh = 0.f;
#endif /* PRESSURE-ENERGY */
#if defined(ANARCHY_PU_SPH) || defined(SPHENIX_SPH)
/* Initialise viscosity variables */
#if defined(SPHENIX_SPH)
p->force.pressure = hydro_get_comoving_pressure(p);
#endif
p->viscosity.alpha = 0.8;
p->viscosity.div_v = 0.f;
p->viscosity.div_v_previous_step = 0.f;
p->viscosity.v_sig = hydro_get_comoving_soundspeed(p);
#endif /* ANARCHY_PU_SPH viscosity variables */
#if defined(GIZMO_MFV_SPH) || defined(GIZMO_MFM_SPH)
const float E[3][3] = {
{1.0f, 0.0f, 0.0f}, {0.0f, 1.0f, 0.0f}, {0.0f, 0.0f, 1.0f}};
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
p->geometry.matrix_E[i][j] = E[i][j];
}
}
p->geometry.volume = 1.0f;
#endif
/* And prepare for a round of force tasks. */
hydro_prepare_force(p, xp, cosmo, hydro_props, pressure_floor, 0., 0.);
hydro_reset_acceleration(p);
}
}
/**
* @brief Ends the density loop by adding the appropriate coefficients
*/
void end_calculation_density(struct cell *c, const struct cosmology *cosmo,
const struct gravity_props *gravity_props) {
for (int pid = 0; pid < c->hydro.count; pid++) {
hydro_end_density(&c->hydro.parts[pid], cosmo);
adaptive_softening_end_density(&c->hydro.parts[pid], gravity_props);
mhd_end_density(&c->hydro.parts[pid], cosmo);
#if defined(GIZMO_MFV_SPH) || defined(GIZMO_MFM_SPH)
/* undo the artificial correction that was applied to wcount */
c->hydro.parts[pid].density.wcount /= c->hydro.parts[pid].geometry.wcorr;
c->hydro.parts[pid].density.wcount_dh /= c->hydro.parts[pid].geometry.wcorr;
#endif
/* Recover the common "Neighbour number" definition */
c->hydro.parts[pid].density.wcount *= pow_dimension(c->hydro.parts[pid].h);
c->hydro.parts[pid].density.wcount *= kernel_norm;
}
}
/**
* @brief Ends the force loop by adding the appropriate coefficients
*/
void end_calculation_force(struct cell *c, const struct cosmology *cosmo,
const struct gravity_props *gravity_props) {
for (int pid = 0; pid < c->hydro.count; pid++) {
struct part *volatile part = &c->hydro.parts[pid];
hydro_end_force(part, cosmo);
}
}
/**
* @brief Dump all the particles to a file
*/
void dump_particle_fields(char *fileName, struct cell *ci, struct cell *cj) {
FILE *file = fopen(fileName, "a");
/* Write header */
fprintf(file, "# %4s %13s %13s\n", "ID", "wcount", "h_dt");
fprintf(file, "# ci --------------------------------------------\n");
for (int pid = 0; pid < ci->hydro.count; pid++) {
fprintf(file, "%6llu %13e %13e\n", ci->hydro.parts[pid].id,
ci->hydro.parts[pid].density.wcount,
ci->hydro.parts[pid].force.h_dt);
}
fprintf(file, "# cj --------------------------------------------\n");
for (int pjd = 0; pjd < cj->hydro.count; pjd++) {
fprintf(file, "%6llu %13e %13e\n", cj->hydro.parts[pjd].id,
cj->hydro.parts[pjd].density.wcount,
cj->hydro.parts[pjd].force.h_dt);
}
fclose(file);
}
/* Just a forward declaration... */
void runner_dopair2_force_vec(struct runner *r, struct cell *ci,
struct cell *cj);
void runner_doself1_density_vec(struct runner *r, struct cell *ci);
void runner_dopair1_branch_density(struct runner *r, struct cell *ci,
struct cell *cj, int limit_h_min,
int limit_h_max);
void runner_dopair2_branch_force(struct runner *r, struct cell *ci,
struct cell *cj, int limit_h_min,
int limit_h_max);
/**
* @brief Computes the pair interactions of two cells using SWIFT and a brute
* force implementation.
*/
void test_pair_interactions(struct runner *runner, struct cell **ci,
struct cell **cj, char *swiftOutputFileName,
char *bruteForceOutputFileName,
serial_interaction_func serial_interaction,
interaction_func vec_interaction, init_func init,
finalise_func finalise) {
const struct engine *e = runner->e;
runner_do_hydro_sort(runner, *ci, 0x1FFF, 0, 0, 0, 0);
runner_do_hydro_sort(runner, *cj, 0x1FFF, 0, 0, 0, 0);
/* Zero the fields */
init(*ci, e->cosmology, e->hydro_properties, e->pressure_floor_props);
init(*cj, e->cosmology, e->hydro_properties, e->pressure_floor_props);
/* Run the test */
vec_interaction(runner, *ci, *cj, 0, 0);
/* Let's get physical ! */
finalise(*ci, e->cosmology, e->gravity_properties);
finalise(*cj, e->cosmology, e->gravity_properties);
/* Dump if necessary */
dump_particle_fields(swiftOutputFileName, *ci, *cj);
/* Now perform a brute-force version for accuracy tests */
/* Zero the fields */
init(*ci, e->cosmology, e->hydro_properties, e->pressure_floor_props);
init(*cj, e->cosmology, e->hydro_properties, e->pressure_floor_props);
/* Run the brute-force test */
serial_interaction(runner, *ci, *cj);
/* Let's get physical ! */
finalise(*ci, e->cosmology, e->gravity_properties);
finalise(*cj, e->cosmology, e->gravity_properties);
dump_particle_fields(bruteForceOutputFileName, *ci, *cj);
}
/**
* @brief Computes the pair interactions of two cells in various configurations.
*/
void test_all_pair_interactions(
struct runner *runner, double *offset2, size_t particles, double size,
double h, double rho, long long *partId, double perturbation, double h_pert,
char *swiftOutputFileName, char *bruteForceOutputFileName,
serial_interaction_func serial_interaction,
interaction_func vec_interaction, init_func init, finalise_func finalise) {
double offset1[3] = {0, 0, 0};
struct cell *ci, *cj;
/* Only one particle in each cell. */
ci = make_cell(1, offset1, size, h, rho, partId, perturbation, h_pert, 1.);
cj = make_cell(1, offset2, size, h, rho, partId, perturbation, h_pert, 1.);
test_pair_interactions(runner, &ci, &cj, swiftOutputFileName,
bruteForceOutputFileName, serial_interaction,
vec_interaction, init, finalise);
clean_up(ci);
clean_up(cj);
/* All active particles. */
ci = make_cell(particles, offset1, size, h, rho, partId, perturbation, h_pert,
1.);
cj = make_cell(particles, offset2, size, h, rho, partId, perturbation, h_pert,
1.);
test_pair_interactions(runner, &ci, &cj, swiftOutputFileName,
bruteForceOutputFileName, serial_interaction,
vec_interaction, init, finalise);
clean_up(ci);
clean_up(cj);
/* Half particles are active. */
ci = make_cell(particles, offset1, size, h, rho, partId, perturbation, h_pert,
0.5);
cj = make_cell(particles, offset2, size, h, rho, partId, perturbation, h_pert,
0.5);
test_pair_interactions(runner, &ci, &cj, swiftOutputFileName,
bruteForceOutputFileName, serial_interaction,
vec_interaction, init, finalise);
clean_up(ci);
clean_up(cj);
/* All particles inactive. */
ci = make_cell(particles, offset1, size, h, rho, partId, perturbation, h_pert,
0.);
cj = make_cell(particles, offset2, size, h, rho, partId, perturbation, h_pert,
0.);
test_pair_interactions(runner, &ci, &cj, swiftOutputFileName,
bruteForceOutputFileName, serial_interaction,
vec_interaction, init, finalise);
clean_up(ci);
clean_up(cj);
/* 10% of particles active. */
ci = make_cell(particles, offset1, size, h, rho, partId, perturbation, h_pert,
0.1);
cj = make_cell(particles, offset2, size, h, rho, partId, perturbation, h_pert,
0.1);
test_pair_interactions(runner, &ci, &cj, swiftOutputFileName,
bruteForceOutputFileName, serial_interaction,
vec_interaction, init, finalise);
clean_up(ci);
clean_up(cj);
/* One active cell one inactive cell. */
ci = make_cell(particles, offset1, size, h, rho, partId, perturbation, h_pert,
1.0);
cj = make_cell(particles, offset2, size, h, rho, partId, perturbation, h_pert,
0.);
test_pair_interactions(runner, &ci, &cj, swiftOutputFileName,
bruteForceOutputFileName, serial_interaction,
vec_interaction, init, finalise);
clean_up(ci);
clean_up(cj);
/* One active cell one inactive cell. */
ci = make_cell(particles, offset1, size, h, rho, partId, perturbation, h_pert,
0.);
cj = make_cell(particles, offset2, size, h, rho, partId, perturbation, h_pert,
1.0);
test_pair_interactions(runner, &ci, &cj, swiftOutputFileName,
bruteForceOutputFileName, serial_interaction,
vec_interaction, init, finalise);
clean_up(ci);
clean_up(cj);
/* Smaller cells, all active. */
ci = make_cell(2, offset1, size, h, rho, partId, perturbation, h_pert, 1.0);
cj = make_cell(2, offset2, size, h, rho, partId, perturbation, h_pert, 1.0);
test_pair_interactions(runner, &ci, &cj, swiftOutputFileName,
bruteForceOutputFileName, serial_interaction,
vec_interaction, init, finalise);
clean_up(ci);
clean_up(cj);
/* Different numbers of particles in each cell. */
ci = make_cell(10, offset1, size, h, rho, partId, perturbation, h_pert, 0.5);
cj = make_cell(3, offset2, size, h, rho, partId, perturbation, h_pert, 0.75);
test_pair_interactions(runner, &ci, &cj, swiftOutputFileName,
bruteForceOutputFileName, serial_interaction,
vec_interaction, init, finalise);
clean_up(ci);
clean_up(cj);
/* One cell inactive and the other only half active. */
ci = make_cell(particles, offset1, size, h, rho, partId, perturbation, h_pert,
0.5);
cj = make_cell(particles, offset2, size, h, rho, partId, perturbation, h_pert,
0.);
test_pair_interactions(runner, &ci, &cj, swiftOutputFileName,
bruteForceOutputFileName, serial_interaction,
vec_interaction, init, finalise);
clean_up(ci);
clean_up(cj);
/* One cell inactive and the other only half active. */
ci = make_cell(particles, offset1, size, h, rho, partId, perturbation, h_pert,
0.);
cj = make_cell(particles, offset2, size, h, rho, partId, perturbation, h_pert,
0.5);
test_pair_interactions(runner, &ci, &cj, swiftOutputFileName,
bruteForceOutputFileName, serial_interaction,
vec_interaction, init, finalise);
/* Clean things to make the sanitizer happy ... */
clean_up(ci);
clean_up(cj);
}
int main(int argc, char *argv[]) {
size_t particles = 0, runs = 0, type = 0;
double h = 1.23485, size = 1., rho = 1.;
double perturbation = 0.1, h_pert = 1.1;
struct space space;
struct engine engine;
struct cosmology cosmo;
struct gravity_props gravity_props;
struct hydro_props hydro_props;
struct pressure_floor_props pressure_floor;
struct sink_props sink_props;
struct phys_const prog_const;
struct runner *runner;
static long long partId = 0;
char outputFileNameExtension[100] = "";
char swiftOutputFileName[200] = "";
char bruteForceOutputFileName[200] = "";
/* Initialize CPU frequency, this also starts time. */
unsigned long long cpufreq = 0;
clocks_set_cpufreq(cpufreq);
/* Choke on FP-exceptions */
#ifdef HAVE_FE_ENABLE_EXCEPT
feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
#endif
/* Generate a RNG seed from time. */
unsigned int seed = time(NULL);
int c;
while ((c = getopt(argc, argv, "h:p:n:r:t:d:s:f:")) != -1) {
switch (c) {
case 'h':
sscanf(optarg, "%lf", &h);
break;
case 'p':
sscanf(optarg, "%lf", &h_pert);
break;
case 'n':
sscanf(optarg, "%zu", &particles);
break;
case 'r':
sscanf(optarg, "%zu", &runs);
break;
case 't':
sscanf(optarg, "%zu", &type);
break;
case 'd':
sscanf(optarg, "%lf", &perturbation);
break;
case 's':
sscanf(optarg, "%u", &seed);
break;
case 'f':
strcpy(outputFileNameExtension, optarg);
break;
case '?':
error("Unknown option.");
break;
}
}
if (h < 0 || particles == 0 || runs == 0 || type > 2) {
printf(
"\nUsage: %s -n PARTICLES_PER_AXIS -r NUMBER_OF_RUNS [OPTIONS...]\n"
"\nGenerates a cell pair, filled with particles on a Cartesian grid."
"\nThese are then interacted using runner_dopair1_density."
"\n\nOptions:"
"\n-t TYPE=0 - cells share face (0), edge (1) or corner (2)"
"\n-h DISTANCE=1.2348 - smoothing length"
"\n-p - Random fractional change in h, h=h*random(1,p)"
"\n-d pert - perturbation to apply to the particles [0,1["
"\n-s seed - seed for RNG"
"\n-f fileName - part of the file name used to save the dumps\n",
argv[0]);
exit(1);
}
/* Seed RNG. */
message("Seed used for RNG: %d", seed);
srand(seed);
space.periodic = 0;
space.dim[0] = 3.;
space.dim[1] = 3.;
space.dim[2] = 3.;
engine.s = &space;
engine.time = 0.1f;
engine.ti_current = 8;
engine.max_active_bin = num_time_bins;
engine.nodeID = NODE_ID;
prog_const.const_vacuum_permeability = 1.0;
engine.physical_constants = &prog_const;
cosmology_init_no_cosmo(&cosmo);
engine.cosmology = &cosmo;
hydro_props_init_no_hydro(&hydro_props);
engine.hydro_properties = &hydro_props;
engine.pressure_floor_props = &pressure_floor;
bzero(&gravity_props, sizeof(struct gravity_props));
gravity_props.G_Newton = 1.;
engine.gravity_properties = &gravity_props;
bzero(&sink_props, sizeof(struct sink_props));
engine.sink_properties = &sink_props;
if (posix_memalign((void **)&runner, SWIFT_STRUCT_ALIGNMENT,
sizeof(struct runner)) != 0) {
error("couldn't allocate runner");
}
runner->e = &engine;
/* Create output file names. */
sprintf(swiftOutputFileName, "swift_dopair_%.150s.dat",
outputFileNameExtension);
sprintf(bruteForceOutputFileName, "brute_force_pair_%.150s.dat",
outputFileNameExtension);
/* Delete files if they already exist. */
remove(swiftOutputFileName);
remove(bruteForceOutputFileName);
#ifdef WITH_VECTORIZATION
runner->ci_cache.count = 0;
cache_init(&runner->ci_cache, 512);
runner->cj_cache.count = 0;
cache_init(&runner->cj_cache, 512);
#endif
double offset[3] = {1., 0., 0.};
/* Define which interactions to call */
serial_interaction_func serial_inter_func = &pairs_all_density;
interaction_func vec_inter_func = &runner_dopair1_branch_density;
init_func init = &zero_particle_fields_density;
finalise_func finalise = &end_calculation_density;
/* Test a pair of cells face-on. */
test_all_pair_interactions(runner, offset, particles, size, h, rho, &partId,
perturbation, h_pert, swiftOutputFileName,
bruteForceOutputFileName, serial_inter_func,
vec_inter_func, init, finalise);
/* Test a pair of cells edge-on. */
offset[0] = 1.;
offset[1] = 1.;
offset[2] = 0.;
test_all_pair_interactions(runner, offset, particles, size, h, rho, &partId,
perturbation, h_pert, swiftOutputFileName,
bruteForceOutputFileName, serial_inter_func,
vec_inter_func, init, finalise);
/* Test a pair of cells corner-on. */
offset[0] = 1.;
offset[1] = 1.;
offset[2] = 1.;
test_all_pair_interactions(runner, offset, particles, size, h, rho, &partId,
perturbation, h_pert, swiftOutputFileName,
bruteForceOutputFileName, serial_inter_func,
vec_inter_func, init, finalise);
/* Re-assign function pointers. */
serial_inter_func = &pairs_all_force;
vec_inter_func = &runner_dopair2_branch_force;
init = &zero_particle_fields_force;
finalise = &end_calculation_force;
/* Create new output file names. */
sprintf(swiftOutputFileName, "swift_dopair2_force_%.150s.dat",
outputFileNameExtension);
sprintf(bruteForceOutputFileName, "brute_force_dopair2_%.150s.dat",
outputFileNameExtension);
/* Delete files if they already exist. */
remove(swiftOutputFileName);
remove(bruteForceOutputFileName);
/* Test a pair of cells face-on. */
offset[0] = 1.;
offset[1] = 0.;
offset[2] = 0.;
test_all_pair_interactions(runner, offset, particles, size, h, rho, &partId,
perturbation, h_pert, swiftOutputFileName,
bruteForceOutputFileName, serial_inter_func,
vec_inter_func, init, finalise);
/* Test a pair of cells edge-on. */
offset[0] = 1.;
offset[1] = 1.;
offset[2] = 0.;
test_all_pair_interactions(runner, offset, particles, size, h, rho, &partId,
perturbation, h_pert, swiftOutputFileName,
bruteForceOutputFileName, serial_inter_func,
vec_inter_func, init, finalise);
/* Test a pair of cells corner-on. */
offset[0] = 1.;
offset[1] = 1.;
offset[2] = 1.;
test_all_pair_interactions(runner, offset, particles, size, h, rho, &partId,
perturbation, h_pert, swiftOutputFileName,
bruteForceOutputFileName, serial_inter_func,
vec_inter_func, init, finalise);
#ifdef WITH_VECTORIZATION
cache_clean(&runner->ci_cache);
cache_clean(&runner->cj_cache);
#endif
free(runner);
return 0;
}