-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathtest27cells.c
667 lines (576 loc) · 21.5 KB
/
test27cells.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
/*******************************************************************************
* This file is part of SWIFT.
* Copyright (C) 2015 Matthieu Schaller ([email protected]).
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
/* Config parameters. */
#include <config.h>
/* Some standard headers. */
#include <fenv.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
/* Local headers. */
#include "swift.h"
#if defined(WITH_VECTORIZATION)
#define DOSELF1 runner_doself1_branch_density
#define DOSELF1_SUBSET runner_doself_subset_branch_density
#define DOPAIR1_SUBSET runner_dopair_subset_branch_density
#define DOPAIR1 runner_dopair1_branch_density
#ifdef TEST_DOSELF_SUBSET
#define DOSELF1_NAME "runner_doself_subset_branch_density"
#else
#define DOSELF1_NAME "runner_doself1_branch_density"
#endif
#ifdef TEST_DOPAIR_SUBSET
#define DOPAIR1_NAME "runner_dopair_subset_branch_density"
#else
#define DOPAIR1_NAME "runner_dopair1_branch_density"
#endif
#endif
#ifndef DOSELF1
#define DOSELF1 runner_doself1_branch_density
#define DOSELF1_SUBSET runner_doself_subset_branch_density
#ifdef TEST_DOSELF_SUBSET
#define DOSELF1_NAME "runner_doself_subset_branch_density"
#else
#define DOSELF1_NAME "runner_doself1_branch_density"
#endif
#endif
#ifndef DOPAIR1
#define DOPAIR1 runner_dopair1_branch_density
#define DOPAIR1_SUBSET runner_dopair_subset_branch_density
#ifdef TEST_DOPAIR_SUBSET
#define DOPAIR1_NAME "runner_dopair1_subset_branch_density"
#else
#define DOPAIR1_NAME "runner_dopair1_branch_density"
#endif
#endif
#define NODE_ID 0
enum velocity_types {
velocity_zero,
velocity_random,
velocity_divergent,
velocity_rotating
};
/**
* @brief Constructs a cell and all of its particle in a valid state prior to
* a DOPAIR or DOSELF calcuation.
*
* @param n The cube root of the number of particles.
* @param offset The position of the cell offset from (0,0,0).
* @param size The cell size.
* @param h The smoothing length of the particles in units of the inter-particle
* separation.
* @param density The density of the fluid.
* @param partId The running counter of IDs.
* @param pert The perturbation to apply to the particles in the cell in units
* of the inter-particle separation.
* @param vel The type of velocity field (0, random, divergent, rotating)
* @param h_pert The perturbation to apply to the smoothing length.
*/
struct cell *make_cell(size_t n, double *offset, double size, double h,
double density, long long *partId, double pert,
enum velocity_types vel, double h_pert) {
const size_t count = n * n * n;
const double volume = size * size * size;
float h_max = 0.f;
struct cell *cell = NULL;
if (posix_memalign((void **)&cell, cell_align, sizeof(struct cell)) != 0) {
error("Couldn't allocate the cell");
}
bzero(cell, sizeof(struct cell));
if (posix_memalign((void **)&cell->hydro.parts, part_align,
count * sizeof(struct part)) != 0) {
error("couldn't allocate particles, no. of particles: %d", (int)count);
}
bzero(cell->hydro.parts, count * sizeof(struct part));
/* Construct the parts */
struct part *part = cell->hydro.parts;
for (size_t x = 0; x < n; ++x) {
for (size_t y = 0; y < n; ++y) {
for (size_t z = 0; z < n; ++z) {
part->x[0] =
offset[0] +
size * (x + 0.5 + random_uniform(-0.5, 0.5) * pert) / (float)n;
part->x[1] =
offset[1] +
size * (y + 0.5 + random_uniform(-0.5, 0.5) * pert) / (float)n;
part->x[2] =
offset[2] +
size * (z + 0.5 + random_uniform(-0.5, 0.5) * pert) / (float)n;
switch (vel) {
case velocity_zero:
part->v[0] = 0.f;
part->v[1] = 0.f;
part->v[2] = 0.f;
break;
case velocity_random:
part->v[0] = random_uniform(-0.05, 0.05);
part->v[1] = random_uniform(-0.05, 0.05);
part->v[2] = random_uniform(-0.05, 0.05);
break;
case velocity_divergent:
part->v[0] = part->x[0] - 1.5 * size;
part->v[1] = part->x[1] - 1.5 * size;
part->v[2] = part->x[2] - 1.5 * size;
break;
case velocity_rotating:
part->v[0] = part->x[1];
part->v[1] = -part->x[0];
part->v[2] = 0.f;
break;
}
if (h_pert)
part->h = size * h * random_uniform(1.f, h_pert) / (float)n;
else
part->h = size * h / (float)n;
h_max = fmaxf(h_max, part->h);
part->id = ++(*partId);
part->depth_h = 0;
#if defined(GIZMO_MFV_SPH) || defined(GIZMO_MFM_SPH)
part->conserved.mass = density * volume / count;
#else
part->mass = density * volume / count;
#endif
#if defined(HOPKINS_PE_SPH)
part->entropy = 1.f;
part->entropy_one_over_gamma = 1.f;
#endif
part->time_bin = 1;
#ifdef SWIFT_DEBUG_CHECKS
part->ti_drift = 8;
part->ti_kick = 8;
#endif
++part;
}
}
}
/* Cell properties */
cell->split = 0;
cell->depth = 0;
cell->hydro.h_max = h_max;
cell->hydro.h_max_active = h_max;
cell->hydro.count = count;
cell->hydro.dx_max_part = 0.;
cell->hydro.dx_max_sort = 0.;
cell->width[0] = size;
cell->width[1] = size;
cell->width[2] = size;
cell->dmin = size;
cell->loc[0] = offset[0];
cell->loc[1] = offset[1];
cell->loc[2] = offset[2];
cell->h_min_allowed = cell->dmin * 0.5 * (1. / kernel_gamma);
cell->h_max_allowed = cell->dmin * (1. / kernel_gamma);
cell->hydro.super = cell;
cell->hydro.ti_old_part = 8;
cell->hydro.ti_end_min = 8;
cell->nodeID = NODE_ID;
shuffle_particles(cell->hydro.parts, cell->hydro.count);
cell->hydro.sorted = 0;
cell->hydro.sort = NULL;
return cell;
}
void clean_up(struct cell *ci) {
free(ci->hydro.parts);
free(ci->hydro.sort);
free(ci);
}
/**
* @brief Initializes all particles field to be ready for a density calculation
*/
void zero_particle_fields(struct cell *c) {
struct hydro_space *hspointer = NULL;
for (int pid = 0; pid < c->hydro.count; pid++) {
hydro_init_part(&c->hydro.parts[pid], hspointer);
adaptive_softening_init_part(&c->hydro.parts[pid]);
mhd_init_part(&c->hydro.parts[pid]);
}
}
/**
* @brief Ends the loop by adding the appropriate coefficients
*/
void end_calculation(struct cell *c, const struct cosmology *cosmo,
const struct gravity_props *gravity_props) {
for (int pid = 0; pid < c->hydro.count; pid++) {
hydro_end_density(&c->hydro.parts[pid], cosmo);
adaptive_softening_end_density(&c->hydro.parts[pid], gravity_props);
mhd_end_density(&c->hydro.parts[pid], cosmo);
/* Recover the common "Neighbour number" definition */
c->hydro.parts[pid].density.wcount *= pow_dimension(c->hydro.parts[pid].h);
c->hydro.parts[pid].density.wcount *= kernel_norm;
}
}
/**
* @brief Dump all the particles to a file
*/
void dump_particle_fields(char *fileName, struct cell *main_cell,
struct cell **cells) {
FILE *file = fopen(fileName, "w");
/* Write header */
fprintf(file,
"# %4s %10s %10s %10s %10s %10s %10s %13s %13s %13s %13s %13s "
"%13s %13s %13s\n",
"ID", "pos_x", "pos_y", "pos_z", "v_x", "v_y", "v_z", "rho", "rho_dh",
"wcount", "wcount_dh", "div_v", "curl_vx", "curl_vy", "curl_vz");
fprintf(file, "# Main cell --------------------------------------------\n");
/* Write main cell */
for (int pid = 0; pid < main_cell->hydro.count; pid++) {
fprintf(file,
"%6llu %10f %10f %10f %10f %10f %10f %13e %13e %13e %13e %13e "
"%13e %13e %13e\n",
main_cell->hydro.parts[pid].id, main_cell->hydro.parts[pid].x[0],
main_cell->hydro.parts[pid].x[1], main_cell->hydro.parts[pid].x[2],
main_cell->hydro.parts[pid].v[0], main_cell->hydro.parts[pid].v[1],
main_cell->hydro.parts[pid].v[2],
hydro_get_comoving_density(&main_cell->hydro.parts[pid]),
#if defined(GIZMO_MFV_SPH) || defined(GIZMO_MFM_SPH)
0.f,
#elif defined(HOPKINS_PU_SPH) || defined(HOPKINS_PU_SPH_MONAGHAN) || \
defined(ANARCHY_PU_SPH)
main_cell->hydro.parts[pid].density.pressure_bar_dh,
#else
main_cell->hydro.parts[pid].density.rho_dh,
#endif
main_cell->hydro.parts[pid].density.wcount,
main_cell->hydro.parts[pid].density.wcount_dh,
#if defined(GADGET2_SPH) || defined(HOPKINS_PE_SPH) || \
defined(HOPKINS_PU_SPH) || defined(HOPKINS_PU_SPH_MONAGHAN)
main_cell->hydro.parts[pid].density.div_v,
main_cell->hydro.parts[pid].density.rot_v[0],
main_cell->hydro.parts[pid].density.rot_v[1],
main_cell->hydro.parts[pid].density.rot_v[2]
#elif defined(ANARCHY_PU_SPH) || defined(SPHENIX_SPH) || defined(PHANTOM_SPH)
/* this is required because of the variable AV scheme */
main_cell->hydro.parts[pid].viscosity.div_v,
main_cell->hydro.parts[pid].density.rot_v[0],
main_cell->hydro.parts[pid].density.rot_v[1],
main_cell->hydro.parts[pid].density.rot_v[2]
#else
0., 0., 0., 0.
#endif
);
}
/* Write all other cells */
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 3; ++k) {
struct cell *cj = cells[i * 9 + j * 3 + k];
if (cj == main_cell) continue;
fprintf(file,
"# Offset: [%2d %2d %2d] -----------------------------------\n",
i - 1, j - 1, k - 1);
for (int pjd = 0; pjd < cj->hydro.count; pjd++) {
fprintf(
file,
"%6llu %10f %10f %10f %10f %10f %10f %13e %13e %13e %13e %13e "
"%13e %13e %13e\n",
cj->hydro.parts[pjd].id, cj->hydro.parts[pjd].x[0],
cj->hydro.parts[pjd].x[1], cj->hydro.parts[pjd].x[2],
cj->hydro.parts[pjd].v[0], cj->hydro.parts[pjd].v[1],
cj->hydro.parts[pjd].v[2],
hydro_get_comoving_density(&cj->hydro.parts[pjd]),
#if defined(GIZMO_MFV_SPH) || defined(GIZMO_MFM_SPH)
0.f,
#else
main_cell->hydro.parts[pjd].density.rho_dh,
#endif
cj->hydro.parts[pjd].density.wcount,
cj->hydro.parts[pjd].density.wcount_dh,
#if defined(GADGET2_SPH) || defined(HOPKINS_PE_SPH)
cj->hydro.parts[pjd].density.div_v,
cj->hydro.parts[pjd].density.rot_v[0],
cj->hydro.parts[pjd].density.rot_v[1],
cj->hydro.parts[pjd].density.rot_v[2]
#elif defined(ANARCHY_PU_SPH) || defined(SPHENIX_SPH) || defined(PHANTOM_SPH)
/* this is required because of the variable AV scheme */
cj->hydro.parts[pjd].viscosity.div_v,
cj->hydro.parts[pjd].density.rot_v[0],
cj->hydro.parts[pjd].density.rot_v[1],
cj->hydro.parts[pjd].density.rot_v[2]
#else
0., 0., 0., 0.
#endif
);
}
}
}
}
fclose(file);
}
/* Just a forward declaration... */
void runner_dopair1_branch_density(struct runner *r, struct cell *ci,
struct cell *cj, int limit_h_min,
int limit_h_max);
void runner_doself1_branch_density(struct runner *r, struct cell *c,
int limit_h_min, int limit_h_max);
void runner_dopair_subset_branch_density(struct runner *r,
struct cell *restrict ci,
struct part *restrict parts_i,
int *restrict ind, int count,
struct cell *restrict cj);
void runner_doself_subset_branch_density(struct runner *r,
struct cell *restrict ci,
struct part *restrict parts,
int *restrict ind, int count);
/* And go... */
int main(int argc, char *argv[]) {
#ifdef HAVE_SETAFFINITY
engine_pin();
#endif
size_t runs = 0, particles = 0;
double h = 1.23485, size = 1., rho = 1.;
double perturbation = 0., h_pert = 0.;
char outputFileNameExtension[100] = "";
char outputFileName[200] = "";
enum velocity_types vel = velocity_zero;
/* Initialize CPU frequency, this also starts time. */
unsigned long long cpufreq = 0;
clocks_set_cpufreq(cpufreq);
/* Choke on FP-exceptions */
#ifdef HAVE_FE_ENABLE_EXCEPT
feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
#endif
/* Get some randomness going */
srand(0);
int c;
while ((c = getopt(argc, argv, "m:s:h:p:n:r:t:d:f:v:")) != -1) {
switch (c) {
case 'h':
sscanf(optarg, "%lf", &h);
break;
case 'p':
sscanf(optarg, "%lf", &h_pert);
break;
case 's':
sscanf(optarg, "%lf", &size);
break;
case 'n':
sscanf(optarg, "%zu", &particles);
break;
case 'r':
sscanf(optarg, "%zu", &runs);
break;
case 'd':
sscanf(optarg, "%lf", &perturbation);
break;
case 'm':
sscanf(optarg, "%lf", &rho);
break;
case 'f':
strcpy(outputFileNameExtension, optarg);
break;
case 'v':
sscanf(optarg, "%d", (int *)&vel);
break;
case '?':
error("Unknown option.");
break;
}
}
if (h < 0 || particles == 0 || runs == 0) {
printf(
"\nUsage: %s -n PARTICLES_PER_AXIS -r NUMBER_OF_RUNS [OPTIONS...]\n"
"\nGenerates 27 cells, filled with particles on a Cartesian grid."
"\nThese are then interacted using runner_dopair1_density() and "
"runner_doself1_density()."
"\n\nOptions:"
"\n-h DISTANCE=1.2348 - Smoothing length in units of <x>"
"\n-p - Random fractional change in h, h=h*random(1,p)"
"\n-m rho - Physical density in the cell"
"\n-s size - Physical size of the cell"
"\n-d pert - Perturbation to apply to the particles [0,1["
"\n-v type (0,1,2,3) - Velocity field: (zero, random, divergent, "
"rotating)"
"\n-f fileName - Part of the file name used to save the dumps\n",
argv[0]);
exit(1);
}
/* Help users... */
message("DOSELF1 function called: %s", DOSELF1_NAME);
message("DOPAIR1 function called: %s", DOPAIR1_NAME);
message("Vector size: %d", VEC_SIZE);
message("Adiabatic index: ga = %f", hydro_gamma);
message("Hydro implementation: %s", SPH_IMPLEMENTATION);
message("Smoothing length: h = %f", h * size);
message("Kernel: %s", kernel_name);
message("Neighbour target: N = %f", pow_dimension(h) * kernel_norm);
message("Density target: rho = %f", rho);
message("div_v target: div = %f", vel == 2 ? 3.f : 0.f);
message("curl_v target: curl = [0., 0., %f]", vel == 3 ? -2.f : 0.f);
printf("\n");
/* Build the infrastructure */
struct space space;
space.periodic = 1;
space.dim[0] = 3.;
space.dim[1] = 3.;
space.dim[2] = 3.;
struct hydro_props hp;
hydro_props_init_no_hydro(&hp);
hp.eta_neighbours = h;
hp.h_tolerance = 1e0;
hp.h_max = FLT_MAX;
hp.max_smoothing_iterations = 1;
hp.CFL_condition = 0.1;
struct engine engine;
engine.s = &space;
engine.time = 0.1f;
engine.ti_current = 8;
engine.max_active_bin = num_time_bins;
engine.hydro_properties = &hp;
engine.nodeID = NODE_ID;
struct phys_const prog_const;
prog_const.const_vacuum_permeability = 1.0;
engine.physical_constants = &prog_const;
struct cosmology cosmo;
cosmology_init_no_cosmo(&cosmo);
engine.cosmology = &cosmo;
struct gravity_props gravity_props;
bzero(&gravity_props, sizeof(struct gravity_props));
gravity_props.G_Newton = 1.;
struct sink_props sink_props;
bzero(&sink_props, sizeof(struct sink_props));
engine.sink_properties = &sink_props;
struct runner runner;
runner.e = &engine;
struct lightcone_array_props lightcone_array_properties;
lightcone_array_properties.nr_lightcones = 0;
engine.lightcone_array_properties = &lightcone_array_properties;
struct pressure_floor_props pressure_floor;
engine.pressure_floor_props = &pressure_floor;
/* Construct some cells */
struct cell *cells[27];
struct cell *main_cell;
static long long partId = 0;
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 3; ++k) {
double offset[3] = {i * size, j * size, k * size};
cells[i * 9 + j * 3 + k] =
make_cell(particles, offset, size, h, rho, &partId, perturbation,
vel, h_pert);
runner_do_drift_part(&runner, cells[i * 9 + j * 3 + k], 0);
runner_do_hydro_sort(&runner, cells[i * 9 + j * 3 + k], 0x1FFF, 0, 0, 0,
0);
}
}
}
/* Store the main cell for future use */
main_cell = cells[13];
ticks timings[27];
for (int i = 0; i < 27; i++) timings[i] = 0;
ticks time = 0;
for (size_t i = 0; i < runs; ++i) {
/* Zero the fields */
for (int j = 0; j < 27; ++j) zero_particle_fields(cells[j]);
const ticks tic = getticks();
#ifdef WITH_VECTORIZATION
runner.ci_cache.count = 0;
cache_init(&runner.ci_cache, 512);
runner.cj_cache.count = 0;
cache_init(&runner.cj_cache, 512);
#endif
#if defined(TEST_DOSELF_SUBSET) || defined(TEST_DOPAIR_SUBSET)
int *pid = NULL;
int count = 0;
if ((pid = (int *)malloc(sizeof(int) * main_cell->hydro.count)) == NULL)
error("Can't allocate memory for pid.");
for (int k = 0; k < main_cell->hydro.count; k++)
if (part_is_active(&main_cell->hydro.parts[k], &engine)) {
pid[count] = k;
++count;
}
#endif
/* Run all the pairs */
for (int j = 0; j < 27; ++j) {
if (cells[j] != main_cell) {
const ticks sub_tic = getticks();
#ifdef TEST_DOPAIR_SUBSET
DOPAIR1_SUBSET(&runner, main_cell, main_cell->hydro.parts, pid, count,
cells[j]);
#else
DOPAIR1(&runner, main_cell, cells[j], /*limit_h_min=*/0,
/*limit_h_max=*/0);
#endif
timings[j] += getticks() - sub_tic;
}
}
/* And now the self-interaction */
const ticks self_tic = getticks();
#ifdef TEST_DOSELF_SUBSET
DOSELF1_SUBSET(&runner, main_cell, main_cell->hydro.parts, pid, count);
#else
DOSELF1(&runner, main_cell, /*limit_h_min=*/0, /*limit_h_max=*/0);
#endif
timings[13] += getticks() - self_tic;
const ticks toc = getticks();
time += toc - tic;
/* Let's get physical ! */
end_calculation(main_cell, &cosmo, &gravity_props);
/* Dump if necessary */
if (i % 50 == 0) {
sprintf(outputFileName, "swift_dopair_27_%.150s.dat",
outputFileNameExtension);
dump_particle_fields(outputFileName, main_cell, cells);
}
}
/* Output timing */
ticks corner_time = timings[0] + timings[2] + timings[6] + timings[8] +
timings[18] + timings[20] + timings[24] + timings[26];
ticks edge_time = timings[1] + timings[3] + timings[5] + timings[7] +
timings[9] + timings[11] + timings[15] + timings[17] +
timings[19] + timings[21] + timings[23] + timings[25];
ticks face_time = timings[4] + timings[10] + timings[12] + timings[14] +
timings[16] + timings[22];
ticks self_time = timings[13];
message("Corner calculations took: %.3f %s.",
clocks_from_ticks(corner_time / runs), clocks_getunit());
message("Edge calculations took: %.3f %s.",
clocks_from_ticks(edge_time / runs), clocks_getunit());
message("Face calculations took: %.3f %s.",
clocks_from_ticks(face_time / runs), clocks_getunit());
message("Self calculations took: %.3f %s.",
clocks_from_ticks(self_time / runs), clocks_getunit());
message("SWIFT calculation took: %.3f %s.",
clocks_from_ticks(time / runs), clocks_getunit());
/* Now perform a brute-force version for accuracy tests */
/* Zero the fields */
for (int i = 0; i < 27; ++i) zero_particle_fields(cells[i]);
const ticks tic = getticks();
/* Run all the brute-force pairs */
for (int j = 0; j < 27; ++j)
if (cells[j] != main_cell) pairs_all_density(&runner, main_cell, cells[j]);
/* And now the self-interaction */
self_all_density(&runner, main_cell);
const ticks toc = getticks();
/* Let's get physical ! */
end_calculation(main_cell, &cosmo, &gravity_props);
/* Dump */
sprintf(outputFileName, "brute_force_27_%.150s.dat", outputFileNameExtension);
dump_particle_fields(outputFileName, main_cell, cells);
/* Output timing */
message("Brute force calculation took : %.3f %s.",
clocks_from_ticks(toc - tic), clocks_getunit());
/* Clean things to make the sanitizer happy ... */
for (int i = 0; i < 27; ++i) clean_up(cells[i]);
#ifdef WITH_VECTORIZATION
cache_clean(&runner.ci_cache);
cache_clean(&runner.cj_cache);
#endif
return 0;
}