-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathApplyImageLineIntegralConvolution.m
59 lines (52 loc) · 1.76 KB
/
ApplyImageLineIntegralConvolution.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
function [ mOutputImage ] = ApplyImageLineIntegralConvolution(mInputImage, tW, mLength, stepSize)
% ----------------------------------------------------------------------------------------------- %
% [ mOutputImage ] = ApplyImageLineIntegralConvolution(mInputImage, tW, mLength, stepSize)
% Applies the Line Integral Convolution (LIC) on an image
% Input:
% - mInputImage - Input image.
% Matrix, 1 Channels, Floating Point, [0, 1]
% - tW - Vector Field Tensor.
% Tensor, Floating Point, [].
% - mLength - ****
% Scalar, Floating Point [].
% - stepSize - Discrete Integration Step Size.
% Scalar, Floating Point, [].
% Output:
% - mOutputImage - Input image.
% Matrix, 1 Channels, Floating Point, [0, 1]
% Remarks:
% 1. Prefixes:
% - 't' - Tensor.
% - 'm' - Matrix.
% - 'v' - Vector.
% 2. Cl
% TODO:
% 1. aa
% Release Notes:
% - 1.0.000 27/10/2014 Or Yair
% * First release version.
% ----------------------------------------------------------------------------------------------- %
mOutputImage = zeros( size(mInputImage) );
for x = 1 : size(mInputImage, 2)
for y = 1 : size(mInputImage, 1)
val = 0;
l = 0;
counter = 0;
X = x;
Y = y;
while l <= mLength(y,x)
cx = round(X);
cy = round(Y);
if (cx > size(tW, 2) || cy > size(tW, 1) || cx <= 0 || cy <= 0)
break;
end
val = val + mInputImage(cy, cx);
X = X + tW(cy, cx, 1);
Y = Y + tW(cy, cx, 2);
l = l + stepSize;
counter = counter + 1;
end
mOutputImage(y, x) = mOutputImage(y, x) + val/counter;
end
end
end