-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cc
129 lines (101 loc) · 4.54 KB
/
main.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
#include <iostream>
#include "utils.h"
#include "color.h"
#include "sceneobject_list.h"
#include "sphere.h"
#include "camera.h"
#include "material.h"
color ray_color(const ray& r, const sceneobject_list& world, int bounce_limit) {
// If we've exceeded ray bounce limit, no more light gathered
if (bounce_limit <= 0)
return color(0,0,0);
// Check if we hit an object in the scene, if so compute color with normal vec of hit intersection
hit_record rec;
if (world.hit(r, 0.001, infinity, rec)) {
ray scattered;
color attenuation;
if (rec.mat_ptr->scatter(r, rec, attenuation, scattered)) {
return attenuation * ray_color(scattered, world, bounce_limit - 1);
}
return color(0,0,0);
}
// Convert to unit vector
vec3 unit_direction = unit_vector(r.direction());
// Normalize between [-1,1] to create gradient in the y-axis
double t = 0.5*(unit_direction.y() + 1.0);
// Blend colors of choice by adding them as complements relative to the position of the ray
return (1.0 - t)*color(1.0,1.0,1.0) + t*color(0.5, 0.7, 1.0);
}
sceneobject_list generate_random_scene() {
sceneobject_list world;
// Build ground
shared_ptr<lambertian> ground_material = make_shared<lambertian>(color(0.5,0.5,0.5));
world.add(make_shared<sphere>(point3(0,-1000,0), 1000, ground_material));
for (int a = -11; a < 11; a++) {
for (int b = -11; b < 11; b++) {
double choose_material = random_double();
point3 center(a + 0.9*random_double(), 0.2, b + 0.9*random_double());
if ((center - point3(4,0.2,0)).length() > 0.9) {
shared_ptr<material> sphere_material;
// diffuse material
if (choose_material < 0.8) {
color albedo = color::random() * color::random();
sphere_material = make_shared<lambertian>(albedo);
world.add(make_shared<sphere>(center, 0.2, sphere_material));
}
// reflective material (metal)
else if (choose_material < 0.95) {
color albedo = color::random(0.5, 1);
double fuzz = random_double(0,0.5);
sphere_material = make_shared<metal>(albedo, fuzz);
world.add(make_shared<sphere>(center, 0.2, sphere_material));
}
// reflect and refract material (glass)
else {
sphere_material = make_shared<dielectric>(1.5);
world.add(make_shared<sphere>(center, 0.2, sphere_material));
}
}
}
}
shared_ptr<dielectric> material1 = make_shared<dielectric>(1.5);
world.add(make_shared<sphere>(point3(-1,1,3), 1.0, material1));
shared_ptr<lambertian> material2 = make_shared<lambertian>(color(0.4, 0.2, 0.1));
world.add(make_shared<sphere>(point3(-2.5, 1, -1), 1.0, material2));
shared_ptr<metal> material3 = make_shared<metal>(color(0.7, 0.6, 0.5), 0.0);
world.add(make_shared<sphere>(point3(2.5, 1, 0), 1.0, material3));
return world;
}
int main() {
// Define Image Constants
const float aspect_ratio = 3.0 / 2.0;
const int image_width = 1200;
const int image_height = static_cast<int>(image_width/aspect_ratio);
const int samples_per_pixel = 500;
const int ray_bounce_limit = 50;
// Build Objects in Scene
sceneobject_list world = generate_random_scene();
// Camera
point3 lookfrom(6,3, -13);
point3 lookat(0,0,0);
vec3 vup(0,1,0);
auto dist_to_focus = 10.0;
auto aperture = 0.1;
camera cam(lookfrom, lookat, vup, 20, aspect_ratio, aperture, dist_to_focus);
// Output render
std::cout << "P3\n" << image_width << ' ' << image_height << "\n255\n";
for (int j = image_height - 1; j >= 0; j--) {
std::cerr << "\rScanlines remaining: " << j << ' ' << std::flush;
for (int i = 0; i < image_width; i++) {
color pixel_color(0,0,0);
for (int s = 0; s < samples_per_pixel; s++) {
double u = (i + random_double()) / (image_width-1);
double v = (j + random_double()) / (image_height-1);
ray r = cam.get_ray(u,v);
pixel_color += ray_color(r, world, ray_bounce_limit);
}
write_color(std::cout, pixel_color, samples_per_pixel);
}
}
std::cerr << "\nDone.\n";
}