-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
186 lines (157 loc) · 6.91 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
from flask import Flask, render_template, request, jsonify, send_from_directory, g
import os
import cv2
import numpy as np
import sqlite3
from werkzeug.utils import secure_filename
from similarity_system import SimilaritySystem
from database import DatabaseHandler
import uuid
app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = 'static/uploads'
app.config['ALLOWED_EXTENSIONS'] = {'png', 'jpg', 'jpeg'}
app.secret_key = 'your-secret-key-here'
# Initialize feature extractor
feature_extractor = SimilaritySystem()
# Database configuration
DATABASE = 'cbir.db'
# Add this global variable at the top of app.py
feedback_store = {}
def get_db():
if 'db' not in g:
g.db = sqlite3.connect(DATABASE, check_same_thread=False)
g.db.row_factory = sqlite3.Row
return g.db
def get_db_handler():
if 'db_handler' not in g:
g.db_handler = DatabaseHandler(get_db())
return g.db_handler
def close_db(e=None):
db = g.pop('db', None)
if db is not None:
db.close()
app.teardown_appcontext(close_db)
def allowed_file(filename):
return '.' in filename and filename.rsplit('.', 1)[1].lower() in app.config['ALLOWED_EXTENSIONS']
@app.route('/')
def index():
return render_template('index.html')
@app.route('/upload', methods=['POST'])
def upload_file():
if 'file' not in request.files:
return jsonify({"error": "No file part"}), 400
file = request.files['file']
if file.filename == '':
return jsonify({"error": "No selected file"}), 400
if file and allowed_file(file.filename):
# Generate a unique filename
unique_id = uuid.uuid4().hex
original_filename = secure_filename(file.filename)
filename = f"{unique_id}_{original_filename}" # Unique filename
filepath = os.path.abspath(os.path.join(app.config['UPLOAD_FOLDER'], filename))
file.save(filepath)
return jsonify({
"filename": filename, # Return the unique filename
"original_filename": original_filename # Optionally return the original filename
})
return jsonify({"error": "File type not allowed"}), 400
@app.route('/search', methods=['POST'])
def perform_search():
data = request.json
filename = data.get('filename') # This should be the unique filename
if not filename:
return jsonify({"error": "Filename not provided"}), 400
filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename) # Use the unique filename
query_image = cv2.imread(filepath)
if query_image is None:
return jsonify({"error": "Failed to load image"}), 400
try:
db_handler = get_db_handler()
results = db_handler.search(query_image, feature_extractor, k=10)
return jsonify({"results": format_results(results)})
except Exception as e:
return jsonify({"error": str(e)}), 500
@app.route('/refine_search', methods=['POST'])
def refine_search():
data = request.json
filename = data.get('filename') # This should be the unique filename
relevant_paths = data.get('relevant', [])
non_relevant_paths = data.get('non_relevant', [])
# Rocchio algorithm parameters
alpha = 0.6
beta = 0.8
gamma = 0.8
try:
# Initialize feedback entry for the current query image
if filename not in feedback_store:
feedback_store[filename] = {
'relevant': [],
'non_relevant': [],
'query_features': None
}
current_feedback = feedback_store[filename]
db_handler = get_db_handler()
# Process relevant images
for path in relevant_paths:
features = db_handler.get_image_features(path)
current_feedback['relevant'].append(features)
# Process non-relevant images
for path in non_relevant_paths:
features = db_handler.get_image_features(path)
current_feedback['non_relevant'].append(features)
# Load and process query image if not already processed
if current_feedback['query_features'] is None:
filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename) # Use the unique filename
query_image = cv2.imread(filepath)
original_features = feature_extractor.extract_features(query_image)
original_features = original_features / np.linalg.norm(original_features)
current_feedback['query_features'] = original_features
else:
original_features = current_feedback['query_features']
# Compute average relevant features
avg_relevant = np.zeros_like(original_features)
if current_feedback['relevant']:
relevant_features = np.array(current_feedback['relevant'], dtype=np.float32)
relevant_norms = np.linalg.norm(relevant_features, axis=1, keepdims=True)
normalized_relevant = relevant_features / np.clip(relevant_norms, 1e-8, None)
avg_relevant = np.mean(normalized_relevant, axis=0)
avg_relevant /= np.linalg.norm(avg_relevant) if np.linalg.norm(avg_relevant) > 0 else 1
# Compute average non-relevant features
avg_non_relevant = np.zeros_like(original_features)
if current_feedback['non_relevant']:
non_rel_features = np.array(current_feedback['non_relevant'], dtype=np.float32)
non_rel_norms = np.linalg.norm(non_rel_features, axis=1, keepdims=True)
normalized_non_rel = non_rel_features / np.clip(non_rel_norms, 1e-8, None)
avg_non_relevant = np.mean(normalized_non_rel, axis=0)
avg_non_relevant /= np.linalg.norm(avg_non_relevant) if np.linalg.norm(avg_non_relevant) > 0 else 1
# Apply Rocchio's formula
refined_query = alpha * original_features + beta * avg_relevant - gamma * avg_non_relevant
refined_query /= np.linalg.norm(refined_query)
# Perform search with refined features
distances, indices = db_handler.index.search(np.array([refined_query]).astype('float32'), k=10)
results = []
for idx, score in zip(indices[0], distances[0]):
if idx < 0:
continue
path = db_handler.get_image_path(int(idx) + 1)
if path:
normalized_score = (score + 1) / 2
results.append((path, float(normalized_score)))
return jsonify({"results": format_results(results)})
except Exception as e:
return jsonify({"error": str(e)}), 500
def format_results(results):
return [{
"path": path,
"url": f"/get_image/{path}",
"score": score
} for path, score in results]
@app.route('/get_image/<path:image_path>')
def get_image(image_path):
if not os.path.exists(image_path):
return jsonify({"error": "Image not found"}), 404
directory = os.path.dirname(image_path)
filename = os.path.basename(image_path)
return send_from_directory(directory, filename)
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5000, debug=True)