-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain_svr.py
86 lines (73 loc) · 3.74 KB
/
train_svr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import argparse
import os
import io
import yaml
import torch
from torch.utils.data import DataLoader
from lib.datasets.datasets import ShapeNetAllDataset
from lib.datasets.image_transformations import ComposeImageTransformation
from lib.datasets.cloud_transformations import ComposeCloudTransformation
from lib.networks.models import Local_Cond_RNVP_MC_Global_RNVP_VAE_IC
from lib.networks.losses import Local_Cond_RNVP_MC_Global_RNVP_VAE_Loss
from lib.networks.optimizers import Adam, LRUpdater
from lib.networks.training import train
from lib.networks.utils import cnt_params
def define_options_parser():
parser = argparse.ArgumentParser(description='Model training script. Provide a suitable config.')
parser.add_argument('config', help='Path to config file in YAML format.')
parser.add_argument('modelname', help='Model name to save checkpoints.')
parser.add_argument('n_epochs', type=int, help='Total number of training epochs.')
parser.add_argument('lr', type=float, help='Learining rate value.')
parser.add_argument('--resume', action='store_true',
help='Flag signaling if training is resumed from a checkpoint.')
parser.add_argument('--resume_optimizer', action='store_true',
help='Flag signaling if optimizer parameters are resumed from a checkpoint.')
return parser
parser = define_options_parser()
args = parser.parse_args()
with io.open(args.config, 'r') as stream:
config = yaml.load(stream)
config['model_name'] = '{0}.pkl'.format(args.modelname)
config['n_epochs'] = args.n_epochs
config['min_lr'] = config['max_lr'] = args.lr
if args.resume:
config['resume'] = True
if args.resume_optimizer:
config['resume_optimizer'] = True
print('Configurations loaded.')
image_transform = ComposeImageTransformation(**config)
cloud_transform = ComposeCloudTransformation(**config)
train_dataset = ShapeNetAllDataset(config['path2data'], part='train',
images_fname=config['images_fname'], meshes_fname=config['meshes_fname'],
cloud_size=config['cloud_size'], return_eval_cloud=True,
return_original_scale=config['cloud_rescale2orig'],
image_transform=image_transform, cloud_transform=cloud_transform,
chosen_label=config['chosen_label'])
print('Dataset init: done.')
train_iterator = DataLoader(train_dataset, batch_size=config['batch_size'], shuffle=config['shuffle'],
num_workers=config['num_workers'], pin_memory=True, drop_last=True)
print('Iterator init: done.')
model = Local_Cond_RNVP_MC_Global_RNVP_VAE_IC(**config).cuda()
print('Model init: done.')
print('Total number of parameters: {}'.format(cnt_params(model.parameters())))
criterion = Local_Cond_RNVP_MC_Global_RNVP_VAE_Loss(**config).cuda()
optimizer = Adam(model.parameters(), lr=config['max_lr'], weight_decay=config['wd'],
betas=(config['beta1'], config['max_beta2']), amsgrad=True)
scheduler = LRUpdater(len(train_iterator), **config)
print('Optimizer init: done.')
if not config['resume']:
cur_epoch = 0
cur_iter = 0
else:
path2checkpoint = os.path.join(config['path2save'], 'models', 'DPFNets', config['model_name'])
checkpoint = torch.load(path2checkpoint)
cur_epoch = checkpoint['epoch']
cur_iter = checkpoint['iter']
model.load_state_dict(checkpoint['model_state'])
if config['resume_optimizer']:
optimizer.load_state_dict(checkpoint['optimizer_state'])
del(checkpoint)
print('Model {} loaded.'.format(path2checkpoint))
for epoch in range(cur_epoch, config['n_epochs']):
train(train_iterator, model, criterion, optimizer, scheduler, epoch, cur_iter, **config)
cur_iter = 0