Replies: 4 comments 1 reply
-
建议先去看一下官方文档哈
|
Beta Was this translation helpful? Give feedback.
0 replies
-
实验了一张手写的检测,跟ctpn检测没啥区别
…--------------------------------------------------------------------------------
------------------ 原始邮件 ------------------
发件人: SWHL ***@***.***>
发送时间: 2023-10-06 17:40:18
收件人:RapidAI/RapidOCR ***@***.***>
抄送:nissanjp ***@***.***>,Author ***@***.***>
主题: Re: [RapidAI/RapidOCR] python 怎样指定det,rec模型和dict, engine = RapidOCR() (Discussion #129)
建议先去看一下官方文档哈发自我的iPhone------------------ 原始邮件 ------------------发件人: nissansz ***@***.***>发送时间: 2023年10月6日 06:39收件人: RapidAI/RapidOCR ***@***.***>抄送: Subscribed ***@***.***>主题: Re: [RapidAI/RapidOCR] python 怎样指定det,rec模型和dict, engine = RapidOCR() (Discussion #129)
-- encoding: utf-8 --
@author: SWHL
@Contact: ***@***.***
import cv2
from rapidocr_onnxruntime import RapidOCR, VisRes
from rapidocr_openvino import RapidOCR, VisRes
engine = RapidOCR()
vis = VisRes(font_path="resources/fonts/FZYTK.TTF")
image_path = "tests/test_files/ch_en_num.jpg"
with open(image_path, "rb") as f:
img = f.read()
result, elapse_list = engine(img)
print(result)
print(elapse_list)
boxes, txts, scores = list(zip(*result))
vis_img = vis(img, boxes, txts, scores)
cv2.imwrite("vis.png", vis_img)
—Reply to this email directly, view it on GitHub, or unsubscribe.You are receiving this because you are subscribed to this thread.Message ID: ***@***.***>
[
{
***@***.***": "http://schema.org",
***@***.***": "EmailMessage",
"potentialAction": {
***@***.***": "ViewAction",
"target": "#129",
"url": "#129",
"name": "View Discussion"
},
"description": "View this Discussion on GitHub",
"publisher": {
***@***.***": "Organization",
"name": "GitHub",
"url": "https://github.com"
}
}
]
—
Reply to this email directly, view it on GitHub, or unsubscribe.
You are receiving this because you authored the thread.Message ID: ***@***.***>
|
Beta Was this translation helpful? Give feedback.
0 replies
-
我不太清楚你的问题是什么?如果可以详细具体地说明一下你的问题,我这里可以进一步给出参考。 |
Beta Was this translation helpful? Give feedback.
0 replies
-
有没有pixellink, seglink等onnx检测模型? |
Beta Was this translation helpful? Give feedback.
1 reply
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
-
-- encoding: utf-8 --
@author: SWHL
@Contact: [email protected]
import cv2
from rapidocr_onnxruntime import RapidOCR, VisRes
from rapidocr_openvino import RapidOCR, VisRes
engine = RapidOCR()
vis = VisRes(font_path="resources/fonts/FZYTK.TTF")
image_path = "tests/test_files/ch_en_num.jpg"
with open(image_path, "rb") as f:
img = f.read()
result, elapse_list = engine(img)
print(result)
print(elapse_list)
boxes, txts, scores = list(zip(*result))
vis_img = vis(img, boxes, txts, scores)
cv2.imwrite("vis.png", vis_img)
Beta Was this translation helpful? Give feedback.
All reactions