-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathpendulum_ddpg.py
56 lines (48 loc) · 1.7 KB
/
pendulum_ddpg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import gym
from agent.continuous.seperate.ddpg import DDPG
from example_model.policy.mlp.continuous import MLPDDPGContinuousActor
from example_model.policy.mlp.continuous import MLPDDPGContinuousCritic
from agent import utils
import tensorflow as tf
import numpy as np
from tensorboardX import SummaryWriter
writer = SummaryWriter()
state_size = 3
output_size = 1
env = gym.make('Pendulum-v0')
sess = tf.Session()
target_actor = MLPDDPGContinuousActor('target_actor',state_size,output_size)
target_critic = MLPDDPGContinuousCritic('target_critic',state_size,output_size)
actor = MLPDDPGContinuousActor('actor',state_size,output_size)
critic = MLPDDPGContinuousCritic('critic',state_size,output_size)
agent = DDPG(sess,state_size,output_size,1,1,target_actor,target_critic,actor,critic)
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
#saver.restore(sess,'pendulum_ddpg/model')
ep_len = 200
ep = 0
clip = 2.0
epsilon = 1.0
while True:
ep += 1
state = env.reset()
done = False
total_state, total_reward, total_done, total_next_state, total_action = [], [], [], [], []
score = 0
for t in range(ep_len):
#env.render()
action = agent.get_action([state], epsilon)
action = action[0]
next_state, reward, done, _ = env.step(clip * action)
score += reward
agent.get_sample(state,action,reward,next_state,done)
state = next_state
if len(agent.memory) >= 1000:
agent.train_model()
agent.noise_generator.reset()
if len(agent.memory) >= 1000:
epsilon *= 0.995
if ep < 300:
print(ep, score, epsilon)
writer.add_scalar('data/reward', score, ep)
saver.save(sess, 'pendulum_ddpg/model')