From 031396a85a5744006f4ea3cc20da796c5d7dec66 Mon Sep 17 00:00:00 2001 From: David Hadka Date: Mon, 23 Mar 2020 19:29:06 -0500 Subject: [PATCH] Test the sampling methods (#25) --- rhodium/sampling.py | 2 ++ rhodium/test/sampling_test.py | 48 +++++++++++++++++++++++++++++++++++ 2 files changed, 50 insertions(+) create mode 100644 rhodium/test/sampling_test.py diff --git a/rhodium/sampling.py b/rhodium/sampling.py index dc39403..b159f6a 100644 --- a/rhodium/sampling.py +++ b/rhodium/sampling.py @@ -34,6 +34,8 @@ def sample_uniform(model, nsamples): result.append(entry) + return result + def sample_lhs(model, nsamples): """Returns a data set with uncertainty parameters sampled using Latin hypercube sampling.""" if len(model.uncertainties) == 0: diff --git a/rhodium/test/sampling_test.py b/rhodium/test/sampling_test.py new file mode 100644 index 0000000..a957f1d --- /dev/null +++ b/rhodium/test/sampling_test.py @@ -0,0 +1,48 @@ +# Copyright 2015-2016 David Hadka +# +# This file is part of Rhodium, a Python module for robust decision making and +# exploratory modeling. +# +# Rhodium is free software: you can redistribute it and/or modify +# it under the terms of the GNU General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# Rhodium is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU General Public License for more details. +# +# You should have received a copy of the GNU General Public License +# along with Rhodium. If not, see . +from __future__ import division, print_function, absolute_import + +import six +import unittest +from rhodium import * + +class TestSampling(unittest.TestCase): + + def testUniform(self): + model = Model("foo") + model.uncertainties = [UniformUncertainty("x", 5.0, 10.0)] + + samples = sample_uniform(model, 100) + + self.assertEquals(100, len(samples)) + + for i in range(len(samples)): + self.assertTrue("x" in samples[i]) + self.assertTrue(samples[i]["x"] >= 5.0 and samples[i]["x"] <= 10.0) + + def testLHS(self): + model = Model("foo") + model.uncertainties = [UniformUncertainty("x", 5.0, 10.0)] + + samples = sample_lhs(model, 100) + + self.assertEquals(100, len(samples)) + + for i in range(len(samples)): + self.assertTrue("x" in samples[i]) + self.assertTrue(samples[i]["x"] >= 5.0 and samples[i]["x"] <= 10.0)