-
Notifications
You must be signed in to change notification settings - Fork 152
/
Copy pathsansa_movielens.py
60 lines (50 loc) · 1.54 KB
/
sansa_movielens.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
"""Example SANSA (Scalable Approximate NonSymmetric Autoencoder for Collaborative Filtering) on MovieLens data"""
import cornac
from cornac.datasets import movielens
from cornac.eval_methods import RatioSplit
# Load user-item feedback
data = movielens.load_feedback(variant="1M")
# Instantiate an evaluation method to split data into train and test sets.
ratio_split = RatioSplit(
data=data,
test_size=0.2,
exclude_unknowns=True,
verbose=True,
seed=123,
)
sansa_cholmod = cornac.models.SANSA(
name="SANSA (CHOLMOD)",
l2=500.0,
weight_matrix_density=1e-2,
compute_gramian=True,
factorizer_class="CHOLMOD",
factorizer_shift_step=1e-3,
factorizer_shift_multiplier=2.0,
inverter_scans=5,
inverter_finetune_steps=20,
use_absolute_value_scores=False,
)
sansa_icf = cornac.models.SANSA(
name="SANSA (ICF)",
l2=10.0,
weight_matrix_density=1e-2,
compute_gramian=True,
factorizer_class="ICF",
factorizer_shift_step=1e-3,
factorizer_shift_multiplier=2.0,
inverter_scans=5,
inverter_finetune_steps=20,
use_absolute_value_scores=False,
)
# Instantiate evaluation measures
rec_20 = cornac.metrics.Recall(k=20)
rec_50 = cornac.metrics.Recall(k=50)
ndcg_100 = cornac.metrics.NDCG(k=100)
# Put everything together into an experiment and run it
cornac.Experiment(
eval_method=ratio_split,
models=[sansa_cholmod, sansa_icf],
metrics=[rec_20, rec_50, ndcg_100],
user_based=True, # If `False`, results will be averaged over the number of ratings.
save_dir=None,
).run()