-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathfeature_learning.py
173 lines (146 loc) · 6.47 KB
/
feature_learning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import os
import argparse
import itertools
import numpy as np
import torch
from torch.utils.data import Dataset, DataLoader
from tqdm import trange
import cornac
from cornac.utils import cache
from cornac.data import TextModality, GraphModality
from cornac.data.reader import Reader, read_text
from cornac.data.text import BaseTokenizer
from cornac.models.vaecf.vaecf import VAE
parser = argparse.ArgumentParser(description="Feature learning with VAE")
parser.add_argument("-d", "--dataset", type=str, default="office",
choices=["office", "clothing", "sports"],
help="name of the dataset")
parser.add_argument("-w", "--which", type=str, default="user",
choices=["user", "item"],
help="learning feature for user/item")
parser.add_argument("-k", "--latent_dim", type=int, default=20,
help="number of the latent dimensions")
parser.add_argument("-e", "--encoder", type=str, default="[100]",
help="structure of the encoder")
parser.add_argument("-a", "--act_fn", type=str, default="tanh",
choices=["sigmoid", "tanh", "relu", "relu6", "elu"],
help="non-linear activation function for the encoders")
parser.add_argument("-l", "--likelihood", type=str, default="pois",
choices=["pois", "bern", "gaus", "mult"],
help="likelihood function to fit the observations")
parser.add_argument("-ne", "--num_epochs", type=int, default=100,
help="number of training epochs")
parser.add_argument("-bs", "--batch_size", type=int, default=128,
help="batch size for training")
parser.add_argument("-lr", "--learning_rate", type=float, default=0.001,
help="learning rate for training")
parser.add_argument("-kl", "--beta_kl", type=float, default=1.0,
help="beta weighting for the KL divergence")
parser.add_argument("-s", "--random_seed", type=int, default=123,
help="random seed value")
parser.add_argument("-v", "--verbose", action="store_true",
help="increase output verbosity")
args = parser.parse_args()
print(args)
class TextDataset(Dataset):
def __init__(self, text_file):
self.texts, self.ids = read_text(text_file, sep="\t")
id_map = {_id: idx for idx, _id in enumerate(self.ids)}
text_modality = TextModality(
corpus=self.texts,
ids=self.ids,
tokenizer=BaseTokenizer(sep=" ", stop_words="english"),
max_vocab=8000,
max_doc_freq=0.5,
).build(id_map=id_map)
self.bow_mat = text_modality.count_matrix
self.bow_mat.data = np.ones_like(self.bow_mat.data, dtype=np.float32)
self.input_dim = self.bow_mat.shape[1]
def __len__(self):
return self.bow_mat.shape[0]
def __getitem__(self, idx):
return idx, self.bow_mat[idx].A.ravel()
class ContextDataset(Dataset):
def __init__(self, ctx_file):
contexts = Reader().read(ctx_file, fmt="UI", sep="\t")
self.ids = list(set(c[0] for c in contexts) | (set(c[1] for c in contexts)))
id_map = {_id: idx for idx, _id in enumerate(self.ids)}
graph_modality = GraphModality(data=contexts).build(id_map=id_map)
self.ctx_mat = graph_modality.matrix
self.ctx_mat.data = np.ones_like(self.ctx_mat.data, dtype=np.float32)
self.input_dim = self.ctx_mat.shape[1]
def __len__(self):
return self.ctx_mat.shape[0]
def __getitem__(self, idx):
return idx, self.ctx_mat[idx].A.ravel()
def retrieve_dataset():
dataset_dir = f"./data/{args.dataset}"
os.makedirs(dataset_dir, exist_ok=True)
train_path = cache(
url=f"https://static.preferred.ai/bi-vae/{args.dataset}/train.txt",
cache_dir=dataset_dir,
)
test_path = cache(
url=f"https://static.preferred.ai/bi-vae/{args.dataset}/test.txt",
cache_dir=dataset_dir,
)
reader = Reader()
train_data = reader.read(fpath=train_path, sep="\t")
test_data = reader.read(fpath=test_path, sep="\t")
if args.which == "user":
user_text_path = cache(
url=f"https://static.preferred.ai/bi-vae/{args.dataset}/user_texts.txt",
cache_dir=dataset_dir,
)
dataset = TextDataset(user_text_path)
rating_ids = [x[0] for x in itertools.chain(train_data, test_data)]
else:
item_context_path = cache(
url=f"https://static.preferred.ai/bi-vae/{args.dataset}/item_contexts.txt",
cache_dir=dataset_dir,
)
dataset = ContextDataset(item_context_path)
rating_ids = [x[1] for x in itertools.chain(train_data, test_data)]
return dataset, rating_ids
if __name__ == "__main__":
if args.random_seed:
np.random.seed(args.random_seed)
torch.manual_seed(args.random_seed)
torch.cuda.manual_seed(args.random_seed)
dataset, rating_ids = retrieve_dataset()
dataloader = DataLoader(
dataset, batch_size=args.batch_size, shuffle=True, num_workers=4
)
dtype = torch.float32
device = (
torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
)
vae = VAE(
z_dim=args.latent_dim,
ae_structure=[dataset.input_dim] + eval(args.encoder),
act_fn=args.act_fn,
likelihood=args.likelihood,
).to(device)
optimizer = torch.optim.Adam(vae.parameters(), lr=args.learning_rate)
output = np.empty([len(dataset), args.latent_dim], dtype=np.float32)
pbar = trange(1, args.num_epochs + 1, disable=not args.verbose)
for _ in pbar:
sum_loss = 0.0
for batch_idx, batch_x in dataloader:
batch_x = batch_x.to(device)
rec_batch_x, mu, logvar = vae(batch_x)
loss = vae.loss(batch_x, rec_batch_x, mu, logvar, args.beta_kl)
optimizer.zero_grad()
loss.backward()
optimizer.step()
sum_loss += loss.item()
output[batch_idx.numpy()] = mu.detach().cpu().numpy()
pbar.set_postfix(loss=(sum_loss / len(dataset)))
# zeros for user/item without any information
feature_ids = dataset.ids
for _id in set(rating_ids) - set(feature_ids):
feature_ids.append(_id)
output = np.vstack([output, np.zeros([1, args.latent_dim], dtype=np.float32)])
outfile = f"./data/{args.dataset}/{args.which}_features.npz"
np.savez(outfile, ids=feature_ids, features=output)
print(f"Output saved: {outfile}")