-
Notifications
You must be signed in to change notification settings - Fork 4
/
VQA_Appplication_v1.py
206 lines (135 loc) · 6.05 KB
/
VQA_Appplication_v1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
#get_ipython().run_line_magic('matplotlib', 'inline')
import warnings
warnings.filterwarnings("ignore")
import os, argparse
import keras
import cv2, spacy, numpy as np
from keras.models import model_from_json
from keras.optimizers import SGD
from sklearn.externals import joblib
from keras import backend as K
from keras.utils.vis_utils import plot_model
K.set_image_data_format('channels_first')
#K.set_image_dim_ordering('th')
# In[2]:
# File paths for the model, all of these except the CNN Weights are
# provided in the repo, See the models/CNN/README.md to download VGG weights
VQA_model_file_name = 'VQA/VQA_MODEL.json'
VQA_weights_file_name = 'VQA/VQA_MODEL_WEIGHTS.hdf5'
label_encoder_file_name = 'VQA/FULL_labelencoder_trainval.pkl'
# In[3]:
def get_image_model():
from keras.applications.vgg16 import VGG16
model = VGG16(weights='imagenet')
from keras.models import Model
new_input = model.input
hidden_layer = model.layers[-2].output
model_new = Model(new_input, hidden_layer)
sgd = SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True)
model_new.compile(optimizer=sgd, loss='categorical_crossentropy')
return model_new
# In[4]:
model_vgg = get_image_model()
#model_vgg.summary()
# In[5]:
def get_image_features(image_file_name):
''' Runs the given image_file to VGG 16 model and returns the
weights (filters) as a 1, 4096 dimension vector '''
image_features = np.zeros((1, 4096))
# Magic_Number = 4096 > Comes from last layer of VGG Model
# Since VGG was trained as a image of 224x224, every new image
# is required to go through the same transformation
im = cv2.resize(cv2.imread(image_file_name), (224, 224))
im = im.transpose((2,0,1)) # convert the image to RGBA
# this axis dimension is required because VGG was trained on a dimension
# of 1, 3, 224, 224 (first axis is for the batch size
# even though we are using only one image, we have to keep the dimensions consistent
im = np.expand_dims(im, axis=0)
image_features[0,:] = model_vgg.predict(im)[0]
return image_features
# In[6]:
def get_question_features(question):
''' For a given question, a unicode string, returns the time series vector
with each word (token) transformed into a 300 dimension representation
calculated using Glove Vector '''
word_embeddings = spacy.load('en_vectors_web_lg')
tokens = word_embeddings(question)
question_tensor = np.zeros((1, 30, 300))
for j in range(len(tokens)):
question_tensor[0,j,:] = tokens[j].vector
return question_tensor
# In[7]:
##If there is any error with "en_vectors_web_lg" run the following:
#!python -m spacy download en_vectors_web_lg
# In[8]:
def get_VQA_model(VQA_model_file_name, VQA_weights_file_name):
vqa_model = model_from_json(open(VQA_model_file_name).read())
vqa_model.load_weights(VQA_weights_file_name)
vqa_model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
return vqa_model
# In[9]:
model_vqa = get_VQA_model(VQA_model_file_name, VQA_weights_file_name)
#model_vqa.summary()
labelencoder = joblib.load(label_encoder_file_name)
# In[10]:
import numpy as np
import cv2
cap = cv2.VideoCapture(1)
while(True):
# Capture frame-by-frame
ret, frame = cap.read()
question = u'what is there in the picture?'
# Our operations on the frame come here
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
if cv2.waitKey(1) & 0xFF == ord('c'):
image_features = np.zeros((1, 4096))
im = cv2.resize(frame, (224, 224))
im = im.transpose((2,0,1))
im = np.expand_dims(im, axis=0)
image_features[0,:] = model_vgg.predict(im)[0]
question_features = get_question_features(question)
y_output = model_vqa.predict([question_features, image_features])
warnings.filterwarnings("ignore", category=DeprecationWarning)
labelencoder = joblib.load(label_encoder_file_name)
for label in reversed(np.argsort(y_output)[0,-5:]):
print(str(round(y_output[0,label]*100,2)).zfill(5), "% ", labelencoder.inverse_transform(label))
break
# Display the resulting frame
cv2.imshow('frame',gray)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# When everything done, release the capture
cap.release()
cv2.destroyAllWindows()
#Testing the image
# image_file_name = '128912885_8350d277a4.jpg'
# question = u"What is dog doing ?"
# from IPython.display import Image, display
# display(Image(image_file_name))
# # In[11]:
# # get the image features
# image_features = get_image_features(image_file_name)
# # get the question features
# question_features = get_question_features(question)
# y_output = model_vqa.predict([question_features, image_features])
# # This task here is represented as a classification into a 1000 top answers
# # this means some of the answers were not part of training and thus would
# # not show up in the result.
# # These 1000 answers are stored in the sklearn Encoder class
# warnings.filterwarnings("ignore", category=DeprecationWarning)
# labelencoder = joblib.load(label_encoder_file_name)
# for label in reversed(np.argsort(y_output)[0,-5:]):
# print(str(round(y_output[0,label]*100,2)).zfill(5), "% ", labelencoder.inverse_transform(label))
# In[13]:
#Test your own images (for now upload exactly 5 images):
#change the lists with your images and questions
#image_file_names = ['47870024_73a4481f7d.jpg', '47871819_db55ac4699.jpg','49553964_cee950f3ba.jpg','50030244_02cd4de372.jpg','53043785_c468d6f931.jpg']
#questions = [ u"What is the boy doing in the picture?" , u"What are the chilren playing in the picture?", u"What is the man doing?", u"What color is the cat?" , u"What is in this picture?"]
#for i in range(0,5):
# question = questions[i]
# image_file_name = image_file_names[i]
# display(Image(image_file_name))
# print(question)
# y_output = model_vqa.predict([get_question_features(question), get_image_features(image_file_name)])
# for label in reversed(np.argsort(y_output)[0,-5:]):
# print(str(round(y_output[0,label]*100,2)).zfill(5), "% ", labelencoder.inverse_transform(label))