forked from google-deepmind/scalable_agent
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dmlab30.py
218 lines (196 loc) · 8.66 KB
/
dmlab30.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utilities for DMLab-30."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import numpy as np
import tensorflow as tf
LEVEL_MAPPING = collections.OrderedDict([
('rooms_collect_good_objects_train', 'rooms_collect_good_objects_test'),
('rooms_exploit_deferred_effects_train',
'rooms_exploit_deferred_effects_test'),
('rooms_select_nonmatching_object', 'rooms_select_nonmatching_object'),
('rooms_watermaze', 'rooms_watermaze'),
('rooms_keys_doors_puzzle', 'rooms_keys_doors_puzzle'),
('language_select_described_object', 'language_select_described_object'),
('language_select_located_object', 'language_select_located_object'),
('language_execute_random_task', 'language_execute_random_task'),
('language_answer_quantitative_question',
'language_answer_quantitative_question'),
('lasertag_one_opponent_small', 'lasertag_one_opponent_small'),
('lasertag_three_opponents_small', 'lasertag_three_opponents_small'),
('lasertag_one_opponent_large', 'lasertag_one_opponent_large'),
('lasertag_three_opponents_large', 'lasertag_three_opponents_large'),
('natlab_fixed_large_map', 'natlab_fixed_large_map'),
('natlab_varying_map_regrowth', 'natlab_varying_map_regrowth'),
('natlab_varying_map_randomized', 'natlab_varying_map_randomized'),
('skymaze_irreversible_path_hard', 'skymaze_irreversible_path_hard'),
('skymaze_irreversible_path_varied', 'skymaze_irreversible_path_varied'),
('psychlab_arbitrary_visuomotor_mapping',
'psychlab_arbitrary_visuomotor_mapping'),
('psychlab_continuous_recognition', 'psychlab_continuous_recognition'),
('psychlab_sequential_comparison', 'psychlab_sequential_comparison'),
('psychlab_visual_search', 'psychlab_visual_search'),
('explore_object_locations_small', 'explore_object_locations_small'),
('explore_object_locations_large', 'explore_object_locations_large'),
('explore_obstructed_goals_small', 'explore_obstructed_goals_small'),
('explore_obstructed_goals_large', 'explore_obstructed_goals_large'),
('explore_goal_locations_small', 'explore_goal_locations_small'),
('explore_goal_locations_large', 'explore_goal_locations_large'),
('explore_object_rewards_few', 'explore_object_rewards_few'),
('explore_object_rewards_many', 'explore_object_rewards_many'),
])
HUMAN_SCORES = {
'rooms_collect_good_objects_test': 10,
'rooms_exploit_deferred_effects_test': 85.65,
'rooms_select_nonmatching_object': 65.9,
'rooms_watermaze': 54,
'rooms_keys_doors_puzzle': 53.8,
'language_select_described_object': 389.5,
'language_select_located_object': 280.7,
'language_execute_random_task': 254.05,
'language_answer_quantitative_question': 184.5,
'lasertag_one_opponent_small': 12.65,
'lasertag_three_opponents_small': 18.55,
'lasertag_one_opponent_large': 18.6,
'lasertag_three_opponents_large': 31.5,
'natlab_fixed_large_map': 36.9,
'natlab_varying_map_regrowth': 24.45,
'natlab_varying_map_randomized': 42.35,
'skymaze_irreversible_path_hard': 100,
'skymaze_irreversible_path_varied': 100,
'psychlab_arbitrary_visuomotor_mapping': 58.75,
'psychlab_continuous_recognition': 58.3,
'psychlab_sequential_comparison': 39.5,
'psychlab_visual_search': 78.5,
'explore_object_locations_small': 74.45,
'explore_object_locations_large': 65.65,
'explore_obstructed_goals_small': 206,
'explore_obstructed_goals_large': 119.5,
'explore_goal_locations_small': 267.5,
'explore_goal_locations_large': 194.5,
'explore_object_rewards_few': 77.7,
'explore_object_rewards_many': 106.7,
}
RANDOM_SCORES = {
'rooms_collect_good_objects_test': 0.073,
'rooms_exploit_deferred_effects_test': 8.501,
'rooms_select_nonmatching_object': 0.312,
'rooms_watermaze': 4.065,
'rooms_keys_doors_puzzle': 4.135,
'language_select_described_object': -0.07,
'language_select_located_object': 1.929,
'language_execute_random_task': -5.913,
'language_answer_quantitative_question': -0.33,
'lasertag_one_opponent_small': -0.224,
'lasertag_three_opponents_small': -0.214,
'lasertag_one_opponent_large': -0.083,
'lasertag_three_opponents_large': -0.102,
'natlab_fixed_large_map': 2.173,
'natlab_varying_map_regrowth': 2.989,
'natlab_varying_map_randomized': 7.346,
'skymaze_irreversible_path_hard': 0.1,
'skymaze_irreversible_path_varied': 14.4,
'psychlab_arbitrary_visuomotor_mapping': 0.163,
'psychlab_continuous_recognition': 0.224,
'psychlab_sequential_comparison': 0.129,
'psychlab_visual_search': 0.085,
'explore_object_locations_small': 3.575,
'explore_object_locations_large': 4.673,
'explore_obstructed_goals_small': 6.76,
'explore_obstructed_goals_large': 2.61,
'explore_goal_locations_small': 7.66,
'explore_goal_locations_large': 3.14,
'explore_object_rewards_few': 2.073,
'explore_object_rewards_many': 2.438,
}
ALL_LEVELS = frozenset([
'rooms_collect_good_objects_train',
'rooms_collect_good_objects_test',
'rooms_exploit_deferred_effects_train',
'rooms_exploit_deferred_effects_test',
'rooms_select_nonmatching_object',
'rooms_watermaze',
'rooms_keys_doors_puzzle',
'language_select_described_object',
'language_select_located_object',
'language_execute_random_task',
'language_answer_quantitative_question',
'lasertag_one_opponent_small',
'lasertag_three_opponents_small',
'lasertag_one_opponent_large',
'lasertag_three_opponents_large',
'natlab_fixed_large_map',
'natlab_varying_map_regrowth',
'natlab_varying_map_randomized',
'skymaze_irreversible_path_hard',
'skymaze_irreversible_path_varied',
'psychlab_arbitrary_visuomotor_mapping',
'psychlab_continuous_recognition',
'psychlab_sequential_comparison',
'psychlab_visual_search',
'explore_object_locations_small',
'explore_object_locations_large',
'explore_obstructed_goals_small',
'explore_obstructed_goals_large',
'explore_goal_locations_small',
'explore_goal_locations_large',
'explore_object_rewards_few',
'explore_object_rewards_many',
])
def _transform_level_returns(level_returns):
"""Converts training level names to test level names."""
new_level_returns = {}
for level_name, returns in level_returns.iteritems():
new_level_returns[LEVEL_MAPPING.get(level_name, level_name)] = returns
test_set = set(LEVEL_MAPPING.values())
diff = test_set - set(new_level_returns.keys())
if diff:
raise ValueError('Missing levels: %s' % list(diff))
for level_name, returns in new_level_returns.iteritems():
if level_name in test_set:
if not returns:
raise ValueError('Missing returns for level: \'%s\': ' % level_name)
else:
tf.logging.info('Skipping level %s for calculation.', level_name)
return new_level_returns
def compute_human_normalized_score(level_returns, per_level_cap):
"""Computes human normalized score.
Levels that have different training and test versions, will use the returns
for the training level to calculate the score. E.g.
'rooms_collect_good_objects_train' will be used for
'rooms_collect_good_objects_test'. All returns for levels not in DmLab-30
will be ignored.
Args:
level_returns: A dictionary from level to list of episode returns.
per_level_cap: A percentage cap (e.g. 100.) on the per level human
normalized score. If None, no cap is applied.
Returns:
A float with the human normalized score in percentage.
Raises:
ValueError: If a level is missing from `level_returns` or has no returns.
"""
new_level_returns = _transform_level_returns(level_returns)
def human_normalized_score(level_name, returns):
score = np.mean(returns)
human = HUMAN_SCORES[level_name]
random = RANDOM_SCORES[level_name]
human_normalized_score = (score - random) / (human - random) * 100
if per_level_cap is not None:
human_normalized_score = min(human_normalized_score, per_level_cap)
return human_normalized_score
return np.mean(
[human_normalized_score(k, v) for k, v in new_level_returns.items()])