forked from DengPingFan/Inf-Net
-
Notifications
You must be signed in to change notification settings - Fork 0
/
PseudoGenerator.py
233 lines (194 loc) · 10.2 KB
/
PseudoGenerator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
# -*- coding: utf-8 -*-
"""Preview
Code for 'Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Scans'
submit to Transactions on Medical Imaging, 2020.
First Version: Created on 2020-05-13 (@author: Ge-Peng Ji)
"""
# ---- base lib -----
import os
import argparse
from datetime import datetime
import cv2
import numpy as np
import random
import shutil
from scipy import misc
# ---- torch lib ----
import torch
from torch.autograd import Variable
import torch.nn.functional as F
# ---- custom lib ----
# NOTES: Here we nly provide Res2Net, you can also replace it with other backbones
from Code.model_lung_infection.InfNet_Res2Net import Inf_Net as Network
from Code.utils.dataloader_LungInf import get_loader, test_dataset
from Code.utils.utils import clip_gradient, adjust_lr, AvgMeter
from Code.utils.format_conversion import binary2edge
def joint_loss(pred, mask):
weit = 1 + 5*torch.abs(F.avg_pool2d(mask, kernel_size=31, stride=1, padding=15) - mask)
wbce = F.binary_cross_entropy_with_logits(pred, mask, reduce='none')
wbce = (weit*wbce).sum(dim=(2, 3)) / weit.sum(dim=(2, 3))
pred = torch.sigmoid(pred)
inter = ((pred * mask)*weit).sum(dim=(2, 3))
union = ((pred + mask)*weit).sum(dim=(2, 3))
wiou = 1 - (inter + 1)/(union - inter+1)
return (wbce + wiou).mean()
def trainer(train_loader, model, optimizer, epoch, opt, total_step):
model.train()
# ---- multi-scale training ----
size_rates = [0.75, 1, 1.25] # replace your desired scale
loss_record1, loss_record2, loss_record3, loss_record4, loss_record5 = AvgMeter(), AvgMeter(), AvgMeter(), AvgMeter(), AvgMeter()
for i, pack in enumerate(train_loader, start=1):
for rate in size_rates:
optimizer.zero_grad()
# ---- data prepare ----
images, gts, edges = pack
images = Variable(images).cuda()
gts = Variable(gts).cuda()
edges = Variable(edges).cuda()
# ---- rescale ----
trainsize = int(round(opt.trainsize*rate/32)*32)
if rate != 1:
images = F.upsample(images, size=(trainsize, trainsize), mode='bilinear', align_corners=True)
gts = F.upsample(gts, size=(trainsize, trainsize), mode='bilinear', align_corners=True)
edges = F.upsample(edges, size=(trainsize, trainsize), mode='bilinear', align_corners=True)
# ---- forward ----
lateral_map_5, lateral_map_4, lateral_map_3, lateral_map_2, lateral_edge = model(images)
# ---- loss function ----
loss5 = joint_loss(lateral_map_5, gts)
loss4 = joint_loss(lateral_map_4, gts)
loss3 = joint_loss(lateral_map_3, gts)
loss2 = joint_loss(lateral_map_2, gts)
loss1 = torch.nn.BCEWithLogitsLoss()(lateral_edge, edges)
loss = loss1 + loss2 + loss3 + loss4 + loss5
# ---- backward ----
loss.backward()
clip_gradient(optimizer, opt.clip)
optimizer.step()
# ---- recording loss ----
if rate == 1:
loss_record1.update(loss1.data, opt.batchsize)
loss_record2.update(loss2.data, opt.batchsize)
loss_record3.update(loss3.data, opt.batchsize)
loss_record4.update(loss4.data, opt.batchsize)
loss_record5.update(loss5.data, opt.batchsize)
# ---- train visualization ----
if i % 5 == 0 or i == total_step:
print('{} Epoch [{:03d}/{:03d}], Step [{:04d}/{:04d}], [lateral-edge: {:.4f}, '
'lateral-2: {:.4f}, lateral-3: {:0.4f}, lateral-4: {:0.4f}, lateral-5: {:0.4f}]'.
format(datetime.now(), epoch, opt.epoch, i, total_step, loss_record1.show(),
loss_record2.show(), loss_record3.show(), loss_record4.show(), loss_record5.show()))
# ---- save model_lung_infection ----
save_path = 'Snapshots/{}/'.format(opt.train_save)
os.makedirs(save_path, exist_ok=True)
if (epoch+1) % 10 == 0:
torch.save(model.state_dict(), save_path + 'Semi-Inf-Net-%d.pth' % (epoch+1))
print('[Saving Snapshot:]', save_path + 'Semi-Inf-Net-%d.pth' % (epoch+1))
def train_module(_train_path, _train_save, _resume_snapshot):
parser = argparse.ArgumentParser()
parser.add_argument('--epoch', type=int, default=10, help='epoch number')
parser.add_argument('--lr', type=float, default=3e-4, help='learning rate')
parser.add_argument('--batchsize', type=int, default=16, help='training batch size')
parser.add_argument('--trainsize', type=int, default=352, help='training dataset size')
parser.add_argument('--clip', type=float, default=0.5, help='gradient clipping margin')
parser.add_argument('--decay_rate', type=float, default=0.1, help='decay rate of learning rate')
parser.add_argument('--decay_epoch', type=int, default=50, help='every n epochs decay learning rate')
parser.add_argument('--train_path', type=str, default=_train_path)
parser.add_argument('--train_save', type=str, default=_train_save)
parser.add_argument('--resume_snapshot', type=str, default=_resume_snapshot)
opt = parser.parse_args()
# ---- build models ----
torch.cuda.set_device(0)
model = Network(channel=32, n_class=1).cuda()
model.load_state_dict(torch.load(opt.resume_snapshot))
params = model.parameters()
optimizer = torch.optim.Adam(params, opt.lr)
image_root = '{}/Imgs/'.format(opt.train_path)
gt_root = '{}/GT/'.format(opt.train_path)
edge_root = '{}/Edge/'.format(opt.train_path)
train_loader = get_loader(image_root, gt_root, edge_root, batchsize=opt.batchsize, trainsize=opt.trainsize)
total_step = len(train_loader)
print("#"*20, "Start Training", "#"*20)
for epoch in range(1, opt.epoch):
adjust_lr(optimizer, opt.lr, epoch, opt.decay_rate, opt.decay_epoch)
trainer(train_loader=train_loader, model=model, optimizer=optimizer,
epoch=epoch, opt=opt, total_step=total_step)
def inference_module(_data_path, _save_path, _pth_path):
model = Network(channel=32, n_class=1)
model.load_state_dict(torch.load(_pth_path))
model.cuda()
model.eval()
os.makedirs(_save_path, exist_ok=True)
# FIXME
image_root = '{}/'.format(_data_path)
# gt_root = '{}/mask/'.format(data_path)
test_loader = test_dataset(image_root, image_root, 352)
for i in range(test_loader.size):
image, name = test_loader.load_data()
#gt = np.asarray(gt, np.float32)
#gt /= (gt.max() + 1e-8)
image = image.cuda()
lateral_map_5, lateral_map_4, lateral_map_3, lateral_map_2, lateral_edge = model(image)
res = lateral_map_2 # final segmentation
#res = F.upsample(res, size=gt.shape, mode='bilinear', align_corners=False)
res = res.sigmoid().data.cpu().numpy().squeeze()
res = (res - res.min()) / (res.max() - res.min() + 1e-8)
misc.imsave(_save_path + '/' + name, res)
def movefiles(_src_dir, _dst_dir):
os.makedirs(_dst_dir, exist_ok=True)
for file_name in os.listdir(_src_dir):
shutil.copyfile(os.path.join(_src_dir, file_name),
os.path.join(_dst_dir, file_name))
if __name__ == '__main__':
slices = './Dataset/TrainingSet/LungInfection-Train/Pseudo-label/DataPrepare'
slices_dir = slices + '/Imgs_split'
slices_pred_seg_dir = slices + '/pred_seg_split'
slices_pred_edge_dir = slices + '/pred_edge_split'
# NOTES: Hybrid-label = Doctor-label + Pseudo-label
semi = './Dataset/TrainingSet/LungInfection-Train/Pseudo-label/DataPrepare/Hybrid-label'
semi_img = semi + '/Imgs'
semi_mask = semi + '/GT'
semi_edge = semi + '/Edge'
if (not os.path.exists(semi_img)) or (len(os.listdir(semi_img)) != 50):
shutil.copytree('Dataset/TrainingSet/LungInfection-Train/Doctor-label/Imgs',
semi_img)
shutil.copytree('Dataset/TrainingSet/LungInfection-Train/Doctor-label/GT',
semi_mask)
shutil.copytree('Dataset/TrainingSet/LungInfection-Train/Doctor-label/Edge',
semi_edge)
print('Copy done')
else:
print('Check done')
slices_lst = os.listdir(slices_dir)
random.shuffle(slices_lst)
print("#" * 20, "\nStart Training (Inf-Net)\nThis code is written for 'Inf-Net: Automatic COVID-19 Lung "
"Infection Segmentation from CT Scans', 2020, arXiv.\n"
"----\nPlease cite the paper if you use this code and dataset. "
"And any questions feel free to contact me "
"via E-mail ([email protected])\n----\n", "#" * 20)
for i, split_name in enumerate(slices_lst):
print('\n[INFO] {} ({}/320)'.format(split_name, i))
# ---- inference ----
test_aux_dir = os.path.join(slices_dir, split_name)
test_aux_save_dir = os.path.join(slices_pred_seg_dir, split_name)
if i == 0:
snapshot_dir = './Snapshots/save_weights/Inf-Net/Inf-Net-100.pth'
else:
snapshot_dir = './Snapshots/semi_training/Semi-Inf-Net_{}/Semi-Inf-Net-10.pth'.format(i-1)
inference_module(_data_path=test_aux_dir, _save_path=test_aux_save_dir, _pth_path=snapshot_dir)
os.makedirs(os.path.join(slices_pred_edge_dir, split_name), exist_ok=True)
for pred_name in os.listdir(test_aux_save_dir):
edge_tmp = binary2edge(os.path.join(test_aux_save_dir, pred_name))
cv2.imwrite(os.path.join(slices_pred_edge_dir, split_name, pred_name), edge_tmp)
# ---- move generation ----
movefiles(test_aux_dir, semi_img)
movefiles(test_aux_save_dir, semi_mask)
movefiles(os.path.join(slices_pred_edge_dir, split_name), semi_edge)
# ---- training ----
train_module(_train_path=semi,
_train_save='semi_training/Semi-Inf-Net_{}'.format(i),
_resume_snapshot=snapshot_dir)
# move img/pseudo-label into `./Dataset/TrainingSet/LungInfection-Train/Pseudo-label`
shutil.copytree(semi_img, './Dataset/TrainingSet/LungInfection-Train/Pseudo-label/Imgs')
shutil.copytree(semi_mask, './Dataset/TrainingSet/LungInfection-Train/Pseudo-label/GT')
shutil.copytree(semi_edge, 'Dataset/TrainingSet/LungInfection-Train/Pseudo-label/Edge')
print('Pseudo Label Generated!')