Skip to content

why do we need self.adjust and self.bias in BoxTower? #14

Open
@hajungong007

Description

@hajungong007
    # adjust scale
    self.adjust = nn.Parameter(0.1 * torch.ones(1))
    self.bias = nn.Parameter(torch.Tensor(1.0 * torch.ones(1, 4, 1, 1)))

def forward(self, search, kernel, update=None):
    # encode first
    if update is None:
        cls_z, cls_x = self.cls_encode(kernel, search)  # [z11, z12, z13]
    else:
        cls_z, cls_x = self.cls_encode(update, search)  # [z11, z12, z13]

    reg_z, reg_x = self.reg_encode(kernel, search)  # [x11, x12, x13]

    # cls and reg DW
    cls_dw = self.cls_dw(cls_z, cls_x)
    reg_dw = self.reg_dw(reg_z, reg_x)
    x_reg = self.bbox_tower(reg_dw)
    x = self.adjust * self.bbox_pred(x_reg) + self.bias
    x = torch.exp(x)

    # cls tower
    c = self.cls_tower(cls_dw)
    cls = 0.1 * self.cls_pred(c)

    return x, cls, cls_dw, x_reg

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions