forked from LearnTechWithUs/Stereo-Vision
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Main_Stereo_Vision_Prog.py
executable file
·256 lines (215 loc) · 10.6 KB
/
Main_Stereo_Vision_Prog.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
# ▄▀▄ ▄▀▄
# ▄█░░▀▀▀▀▀░░█▄
# ▄▄ █░░░░░░░░░░░█ ▄▄
#█▄▄█ █░░▀░░┬░░▀░░█ █▄▄█
###################################
##### Authors: #####
##### Stephane Vujasinovic #####
##### Frederic Uhrweiller #####
##### #####
##### Creation: 2017 #####
###################################
#***********************
#**** Main Programm ****
#***********************
# Package importation
import numpy as np
import cv2
from openpyxl import Workbook # Used for writing data into an Excel file
from sklearn.preprocessing import normalize
# Filtering
kernel= np.ones((3,3),np.uint8)
def coords_mouse_disp(event,x,y,flags,param):
if event == cv2.EVENT_LBUTTONDBLCLK:
#print x,y,disp[y,x],filteredImg[y,x]
average=0
for u in range (-1,2):
for v in range (-1,2):
average += disp[y+u,x+v]
average=average/9
Distance= -593.97*average**(3) + 1506.8*average**(2) - 1373.1*average + 522.06
Distance= np.around(Distance*0.01,decimals=2)
print('Distance: '+ str(Distance)+' m')
# This section has to be uncommented if you want to take mesurements and store them in the excel
## ws.append([counterdist, average])
## print('Measure at '+str(counterdist)+' cm, the dispasrity is ' + str(average))
## if (counterdist <= 85):
## counterdist += 3
## elif(counterdist <= 120):
## counterdist += 5
## else:
## counterdist += 10
## print('Next distance to measure: '+str(counterdist)+'cm')
# Mouseclick callback
wb=Workbook()
ws=wb.active
#*************************************************
#***** Parameters for Distortion Calibration *****
#*************************************************
# Termination criteria
criteria =(cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
criteria_stereo= (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
# Prepare object points
objp = np.zeros((9*6,3), np.float32)
objp[:,:2] = np.mgrid[0:9,0:6].T.reshape(-1,2)
# Arrays to store object points and image points from all images
objpoints= [] # 3d points in real world space
imgpointsR= [] # 2d points in image plane
imgpointsL= []
# Start calibration from the camera
print('Starting calibration for the 2 cameras... ')
# Call all saved images
for i in range(0,67): # Put the amount of pictures you have taken for the calibration inbetween range(0,?) wenn starting from the image number 0
t= str(i)
ChessImaR= cv2.imread('chessboard-R'+t+'.png',0) # Right side
ChessImaL= cv2.imread('chessboard-L'+t+'.png',0) # Left side
retR, cornersR = cv2.findChessboardCorners(ChessImaR,
(9,6),None) # Define the number of chees corners we are looking for
retL, cornersL = cv2.findChessboardCorners(ChessImaL,
(9,6),None) # Left side
if (True == retR) & (True == retL):
objpoints.append(objp)
cv2.cornerSubPix(ChessImaR,cornersR,(11,11),(-1,-1),criteria)
cv2.cornerSubPix(ChessImaL,cornersL,(11,11),(-1,-1),criteria)
imgpointsR.append(cornersR)
imgpointsL.append(cornersL)
# Determine the new values for different parameters
# Right Side
retR, mtxR, distR, rvecsR, tvecsR = cv2.calibrateCamera(objpoints,
imgpointsR,
ChessImaR.shape[::-1],None,None)
hR,wR= ChessImaR.shape[:2]
OmtxR, roiR= cv2.getOptimalNewCameraMatrix(mtxR,distR,
(wR,hR),1,(wR,hR))
# Left Side
retL, mtxL, distL, rvecsL, tvecsL = cv2.calibrateCamera(objpoints,
imgpointsL,
ChessImaL.shape[::-1],None,None)
hL,wL= ChessImaL.shape[:2]
OmtxL, roiL= cv2.getOptimalNewCameraMatrix(mtxL,distL,(wL,hL),1,(wL,hL))
print('Cameras Ready to use')
#********************************************
#***** Calibrate the Cameras for Stereo *****
#********************************************
# StereoCalibrate function
#flags = 0
#flags |= cv2.CALIB_FIX_INTRINSIC
#flags |= cv2.CALIB_FIX_PRINCIPAL_POINT
#flags |= cv2.CALIB_USE_INTRINSIC_GUESS
#flags |= cv2.CALIB_FIX_FOCAL_LENGTH
#flags |= cv2.CALIB_FIX_ASPECT_RATIO
#flags |= cv2.CALIB_ZERO_TANGENT_DIST
#flags |= cv2.CALIB_RATIONAL_MODEL
#flags |= cv2.CALIB_SAME_FOCAL_LENGTH
#flags |= cv2.CALIB_FIX_K3
#flags |= cv2.CALIB_FIX_K4
#flags |= cv2.CALIB_FIX_K5
retS, MLS, dLS, MRS, dRS, R, T, E, F= cv2.stereoCalibrate(objpoints,
imgpointsL,
imgpointsR,
mtxL,
distL,
mtxR,
distR,
ChessImaR.shape[::-1],
criteria = criteria_stereo,
flags = cv2.CALIB_FIX_INTRINSIC)
# StereoRectify function
rectify_scale= 0 # if 0 image croped, if 1 image nor croped
RL, RR, PL, PR, Q, roiL, roiR= cv2.stereoRectify(MLS, dLS, MRS, dRS,
ChessImaR.shape[::-1], R, T,
rectify_scale,(0,0)) # last paramater is alpha, if 0= croped, if 1= not croped
# initUndistortRectifyMap function
Left_Stereo_Map= cv2.initUndistortRectifyMap(MLS, dLS, RL, PL,
ChessImaR.shape[::-1], cv2.CV_16SC2) # cv2.CV_16SC2 this format enables us the programme to work faster
Right_Stereo_Map= cv2.initUndistortRectifyMap(MRS, dRS, RR, PR,
ChessImaR.shape[::-1], cv2.CV_16SC2)
#*******************************************
#***** Parameters for the StereoVision *****
#*******************************************
# Create StereoSGBM and prepare all parameters
window_size = 3
min_disp = 2
num_disp = 130-min_disp
stereo = cv2.StereoSGBM_create(minDisparity = min_disp,
numDisparities = num_disp,
blockSize = window_size,
uniquenessRatio = 10,
speckleWindowSize = 100,
speckleRange = 32,
disp12MaxDiff = 5,
P1 = 8*3*window_size**2,
P2 = 32*3*window_size**2)
# Used for the filtered image
stereoR=cv2.ximgproc.createRightMatcher(stereo) # Create another stereo for right this time
# WLS FILTER Parameters
lmbda = 80000
sigma = 1.8
visual_multiplier = 1.0
wls_filter = cv2.ximgproc.createDisparityWLSFilter(matcher_left=stereo)
wls_filter.setLambda(lmbda)
wls_filter.setSigmaColor(sigma)
#*************************************
#***** Starting the StereoVision *****
#*************************************
# Call the two cameras
CamR= cv2.VideoCapture(0) # Wenn 0 then Right Cam and wenn 2 Left Cam
CamL= cv2.VideoCapture(2)
while True:
# Start Reading Camera images
retR, frameR= CamR.read()
retL, frameL= CamL.read()
# Rectify the images on rotation and alignement
Left_nice= cv2.remap(frameL,Left_Stereo_Map[0],Left_Stereo_Map[1], interpolation = cv2.INTER_LANCZOS4, borderMode = cv2.BORDER_CONSTANT) # Rectify the image using the kalibration parameters founds during the initialisation
Right_nice= cv2.remap(frameR,Right_Stereo_Map[0],Right_Stereo_Map[1], interpolation = cv2.INTER_LANCZOS4, borderMode = cv2.BORDER_CONSTANT)
## # Draw Red lines
## for line in range(0, int(Right_nice.shape[0]/20)): # Draw the Lines on the images Then numer of line is defines by the image Size/20
## Left_nice[line*20,:]= (0,0,255)
## Right_nice[line*20,:]= (0,0,255)
##
## for line in range(0, int(frameR.shape[0]/20)): # Draw the Lines on the images Then numer of line is defines by the image Size/20
## frameL[line*20,:]= (0,255,0)
## frameR[line*20,:]= (0,255,0)
# Show the Undistorted images
#cv2.imshow('Both Images', np.hstack([Left_nice, Right_nice]))
#cv2.imshow('Normal', np.hstack([frameL, frameR]))
# Convert from color(BGR) to gray
grayR= cv2.cvtColor(Right_nice,cv2.COLOR_BGR2GRAY)
grayL= cv2.cvtColor(Left_nice,cv2.COLOR_BGR2GRAY)
# Compute the 2 images for the Depth_image
disp= stereo.compute(grayL,grayR)#.astype(np.float32)/ 16
dispL= disp
dispR= stereoR.compute(grayR,grayL)
dispL= np.int16(dispL)
dispR= np.int16(dispR)
# Using the WLS filter
filteredImg= wls_filter.filter(dispL,grayL,None,dispR)
filteredImg = cv2.normalize(src=filteredImg, dst=filteredImg, beta=0, alpha=255, norm_type=cv2.NORM_MINMAX);
filteredImg = np.uint8(filteredImg)
#cv2.imshow('Disparity Map', filteredImg)
disp= ((disp.astype(np.float32)/ 16)-min_disp)/num_disp # Calculation allowing us to have 0 for the most distant object able to detect
## # Resize the image for faster executions
## dispR= cv2.resize(disp,None,fx=0.7, fy=0.7, interpolation = cv2.INTER_AREA)
# Filtering the Results with a closing filter
closing= cv2.morphologyEx(disp,cv2.MORPH_CLOSE, kernel) # Apply an morphological filter for closing little "black" holes in the picture(Remove noise)
# Colors map
dispc= (closing-closing.min())*255
dispC= dispc.astype(np.uint8) # Convert the type of the matrix from float32 to uint8, this way you can show the results with the function cv2.imshow()
disp_Color= cv2.applyColorMap(dispC,cv2.COLORMAP_OCEAN) # Change the Color of the Picture into an Ocean Color_Map
filt_Color= cv2.applyColorMap(filteredImg,cv2.COLORMAP_OCEAN)
# Show the result for the Depth_image
#cv2.imshow('Disparity', disp)
#cv2.imshow('Closing',closing)
#cv2.imshow('Color Depth',disp_Color)
cv2.imshow('Filtered Color Depth',filt_Color)
# Mouse click
cv2.setMouseCallback("Filtered Color Depth",coords_mouse_disp,filt_Color)
# End the Programme
if cv2.waitKey(1) & 0xFF == ord(' '):
break
# Save excel
##wb.save("data4.xlsx")
# Release the Cameras
CamR.release()
CamL.release()
cv2.destroyAllWindows()