|
| 1 | +# %% |
| 2 | +r""" |
| 3 | +Coulomb Friction with Slack Variables |
| 4 | +===================================== |
| 5 | +
|
| 6 | +Objectives |
| 7 | +----------- |
| 8 | +
|
| 9 | +- Demonstrate how slack variables and inequality constraints can be used to |
| 10 | + manage discontinuties in the equations of motion. |
| 11 | +- Show how to use a differentiable approximation to get good initial guesses |
| 12 | + for the original problem. |
| 13 | +
|
| 14 | +Description |
| 15 | +----------- |
| 16 | +
|
| 17 | +A block of mass :math:`m` is being pushed with force :math:`F(t)` along on a |
| 18 | +surface. Coulomb friction acts between the block and the surface. Find a |
| 19 | +minimal time solution to push the block 10 meters and then back to the original |
| 20 | +position. |
| 21 | +
|
| 22 | +Notes |
| 23 | +----- |
| 24 | +
|
| 25 | +- Good initial guesses are needed in this example. |
| 26 | +
|
| 27 | +**States** |
| 28 | +
|
| 29 | +- :math:`x(t)` - position of the block |
| 30 | +- :math:`v(t)` - velocity of the block |
| 31 | +
|
| 32 | +**Inputs** |
| 33 | +
|
| 34 | +- :math:`F(t)` - force applied to the block |
| 35 | +- :math:`F_{fp}(t)` - positive friction force |
| 36 | +- :math:`F_{fn}(t)` - negative friction force |
| 37 | +- :math:`\psi(t)` - slack variable to handle discontinuities in the equations |
| 38 | + of motion. |
| 39 | +
|
| 40 | +**Parameters** |
| 41 | +
|
| 42 | +- :math:`m` - mass of the block |
| 43 | +- :math:`\mu` - coefficient of friction |
| 44 | +- :math:`g` - gravitational acceleration |
| 45 | +
|
| 46 | +""" |
| 47 | + |
| 48 | +import numpy as np |
| 49 | +import sympy as sm |
| 50 | +from opty import Problem |
| 51 | +from opty.utils import MathJaxRepr |
| 52 | +import matplotlib.pyplot as plt |
| 53 | + |
| 54 | +# sphinx_gallery_thumbnail_number = 6 |
| 55 | + |
| 56 | +# %% |
| 57 | +# Coulomb Friction with Step Function |
| 58 | +# =================================== |
| 59 | +# |
| 60 | +# A differentiable approximation of the Coulomb friction force is used to |
| 61 | +# get good initial guesses for the original problem. |
| 62 | + |
| 63 | + |
| 64 | +def smooth_step(x, steepness=10.0): |
| 65 | + """Return a smooth step function, with step at x = 0.0""" |
| 66 | + return 0.5 * (1 + sm.tanh(steepness * x)) |
| 67 | + |
| 68 | + |
| 69 | +# Symbolic equations of motion. |
| 70 | +m, mu, g, t, h, Fr = sm.symbols('m, mu, g, t, h, Fr', real=True) |
| 71 | +x, v, psi, Ffp, Ffn, F = sm.symbols('x, v, psi, Ffp, Ffn, F', cls=sm.Function) |
| 72 | +h = sm.symbols('h', real=True) |
| 73 | + |
| 74 | +state_symbols = (x(t), v(t)) |
| 75 | +constant_symbols = (m, mu, g) |
| 76 | +specified_symbols = (F(t), Ffn(t), Ffp(t), psi(t)) |
| 77 | + |
| 78 | +eom = sm.Matrix([ |
| 79 | + # equations of motion with positive and negative friction force |
| 80 | + x(t).diff(t) - v(t), |
| 81 | + m*v(t).diff(t) - Ffp(t) + Ffn(t) - F(t), |
| 82 | + Ffp(t) - Fr * smooth_step(v(t)), |
| 83 | + Ffn(t) - Fr * smooth_step(-v(t)), |
| 84 | +]) |
| 85 | + |
| 86 | +MathJaxRepr(eom) |
| 87 | + |
| 88 | +# %% |
| 89 | +# Specify the known system parameters. |
| 90 | + |
| 91 | +par_map = { |
| 92 | + m: 1.0, |
| 93 | + mu: 0.6, |
| 94 | + g: 9.81, |
| 95 | +} |
| 96 | +Freib = par_map[m] * par_map[g] * par_map[mu] # Max. friction force |
| 97 | +par_map.update({Fr: Freib}) |
| 98 | + |
| 99 | + |
| 100 | +# %% |
| 101 | +# Specify the objective function and it's gradient. |
| 102 | + |
| 103 | + |
| 104 | +def obj(free): |
| 105 | + """Return h (always the last element in the free variables).""" |
| 106 | + return free[-1] |
| 107 | + |
| 108 | + |
| 109 | +def obj_grad(free): |
| 110 | + """Return the gradient of the objective.""" |
| 111 | + grad = np.zeros_like(free) |
| 112 | + grad[-1] = 1.0 |
| 113 | + return grad |
| 114 | + |
| 115 | + |
| 116 | +# %% |
| 117 | +# Specify the symbolic instance constraints, i.e. initial and end conditions |
| 118 | +# Start with defining the fixed duration and number of nodes. |
| 119 | +# N must be even so the solution of the hump approximation may be used as an |
| 120 | +# initial guess for the slack variable problem. |
| 121 | +N = 100 |
| 122 | +if N % 2 != 0: |
| 123 | + raise ValueError("N must be even for this example.") |
| 124 | + |
| 125 | +t0, tm, tf = 0*h, (N // 2) * h, (N - 1)*h |
| 126 | +instance_constraints = ( |
| 127 | + x(t0) - 0.0, |
| 128 | + v(t0) - 0.0, |
| 129 | + Ffp(t0) - 0.0, |
| 130 | + Ffn(t0) - 0.0, |
| 131 | + x(tm) - 10.0, |
| 132 | + v(tm) - 0.0, |
| 133 | + x(tf) + 0.0, |
| 134 | + v(tf) - 0.0, |
| 135 | +) |
| 136 | + |
| 137 | +bounds = { |
| 138 | + F(t): (-400.0, 400.0), # Force |
| 139 | + h: (0.0, 0.2), |
| 140 | +} |
| 141 | + |
| 142 | +# %% |
| 143 | +# Create an optimization problem. |
| 144 | +prob = Problem(obj, obj_grad, eom, state_symbols, N, h, |
| 145 | + known_parameter_map=par_map, |
| 146 | + instance_constraints=instance_constraints, |
| 147 | + time_symbol=t, |
| 148 | + bounds=bounds) |
| 149 | + |
| 150 | +prob.add_option('max_iter', 5000) |
| 151 | + |
| 152 | +# %% |
| 153 | +# Use a random initial guess. |
| 154 | +np.random.seed(42) |
| 155 | +initial_guess = np.random.randn(prob.num_free) |
| 156 | +initial_guess[-1] = 0.005 |
| 157 | + |
| 158 | +# %% |
| 159 | +# Plot the initial guess. |
| 160 | +_ = prob.plot_trajectories(initial_guess) |
| 161 | + |
| 162 | +# %% |
| 163 | +# Find the optimal solution. |
| 164 | +solution, info = prob.solve(initial_guess) |
| 165 | +initial_guess = solution |
| 166 | +print(info['status_msg']) |
| 167 | +print(f"Interval value h = {info['obj_val']:.5f} s") |
| 168 | +# %% |
| 169 | +# Plot the objective function as a function of optimizer iteration. |
| 170 | +_ = prob.plot_objective_value() |
| 171 | + |
| 172 | +# %% |
| 173 | +# Plot the constraint violations. |
| 174 | +_ = prob.plot_constraint_violations(solution) |
| 175 | + |
| 176 | +# %% |
| 177 | +# Plot the optimal state and input trajectories. |
| 178 | +_ = prob.plot_trajectories(solution) |
| 179 | + |
| 180 | +# %% |
| 181 | +# Plot the friction force. |
| 182 | +xs, rs, _, _ = prob.parse_free(solution) |
| 183 | +ts = prob.time_vector(solution) |
| 184 | +fig, ax = plt.subplots() |
| 185 | +ax.plot(ts, -rs[1] + rs[2]) |
| 186 | +ax.set_ylabel(r'$F_f$ [N]') |
| 187 | +ax.set_xlabel('Time [s]') |
| 188 | +ax.set_title('Friction Force with Smooth Step Function') |
| 189 | +plt.show() |
| 190 | + |
| 191 | +# %% |
| 192 | +# Coulomb Friction with Slack Variables |
| 193 | +# ===================================== |
| 194 | +# |
| 195 | +# This is the original Problem using slack variables. |
| 196 | + |
| 197 | +# %% |
| 198 | +# Symbolic equations of motion. |
| 199 | + |
| 200 | +eom = sm.Matrix([ |
| 201 | + # equations of motion with positive and negative friction force |
| 202 | + x(t).diff(t) - v(t), |
| 203 | + m*v(t).diff(t) - Ffp(t) + Ffn(t) - F(t), |
| 204 | + # following two lines ensure: psi >= abs(v) |
| 205 | + psi(t) + v(t), # >= 0 |
| 206 | + psi(t) - v(t), # >= 0 |
| 207 | + # mu*m*g*psi = (Ffp + Ffn)*psi -> mu*m*g = Ffn v > 0 & mu*m*g = Ffp |
| 208 | + # if v < 0 |
| 209 | + (mu*m*g - Ffp(t) - Ffn(t))*psi(t), |
| 210 | + # Ffp*psi = -Ffp*v -> Ffp is zero if v > 0 |
| 211 | + Ffp(t)*(psi(t) + v(t)), |
| 212 | + # Ffn*psi = Ffn*v -> Ffn is zero if v < 0 |
| 213 | + Ffn(t)*(psi(t) - v(t)), |
| 214 | +]) |
| 215 | + |
| 216 | +MathJaxRepr(eom) |
| 217 | + |
| 218 | +# %% |
| 219 | +# Adjust parameters and bounds to the slack variable problem. |
| 220 | +del par_map[Fr] |
| 221 | + |
| 222 | +bounds.update({Ffn(t): (0.0, Freib)}) # Negative friction force |
| 223 | +bounds.update({Ffp(t): (0.0, Freib)}) # Positive friction force |
| 224 | + |
| 225 | +eom_bounds = { |
| 226 | + 2: (0.0, np.inf), |
| 227 | + 3: (0.0, np.inf), |
| 228 | +} |
| 229 | + |
| 230 | +# %% |
| 231 | +# Create an optimization problem. |
| 232 | +prob = Problem(obj, obj_grad, eom, state_symbols, N, h, |
| 233 | + known_parameter_map=par_map, |
| 234 | + instance_constraints=instance_constraints, |
| 235 | + time_symbol=t, |
| 236 | + bounds=bounds, |
| 237 | + eom_bounds=eom_bounds) |
| 238 | + |
| 239 | +prob.add_option('max_iter', 5000) |
| 240 | + |
| 241 | +# %% |
| 242 | +# Take the solution of the differentiable approximation as initial guess. Some |
| 243 | +# noise is added. |
| 244 | +initial_guess = (np.zeros(prob.num_free) + |
| 245 | + np.random.normal(loc=1.0, scale=1.0, size=prob.num_free)) |
| 246 | +better_guess = (solution + |
| 247 | + np.random.normal(loc=1.0, scale=1.0, size=len(solution))) |
| 248 | +initial_guess[0: 5*N] = better_guess[0: 5*N] |
| 249 | +initial_guess[5*N: 6*N] = np.abs(initial_guess[1*N: 2*N]) |
| 250 | +initial_guess[-1] = solution[-1] |
| 251 | + |
| 252 | +# %% |
| 253 | +# Plot the initial guess. |
| 254 | +_ = prob.plot_trajectories(initial_guess) |
| 255 | + |
| 256 | +# %% |
| 257 | +# Find the optimal solution. |
| 258 | +solution, info = prob.solve(initial_guess) |
| 259 | +initial_guess = solution |
| 260 | +print(info['status_msg']) |
| 261 | +print(f"Interval value h = {info['obj_val']:.5f} s") |
| 262 | + |
| 263 | +# %% |
| 264 | +# Plot the objective function as a function of optimizer iteration. |
| 265 | +_ = prob.plot_objective_value() |
| 266 | + |
| 267 | +# %% |
| 268 | +# Plot the constraint violations. |
| 269 | +_ = prob.plot_constraint_violations(solution) |
| 270 | + |
| 271 | +# %% |
| 272 | +# Plot the optimal state and input trajectories. |
| 273 | +ax = prob.plot_trajectories(solution) |
| 274 | +t_v0 = (N // 2) * solution[-1] |
| 275 | +for i in range(len(ax)): |
| 276 | + ax[i].axvline(t_v0, color='k', linestyle='--') |
| 277 | +_ = ax[1].axhline(0.0, color='k', linestyle='--') |
| 278 | + |
| 279 | +# %% |
| 280 | +# Plot the friction force. |
| 281 | +xs, rs, _, _ = prob.parse_free(solution) |
| 282 | +ts = prob.time_vector(solution) |
| 283 | +fig, ax = plt.subplots() |
| 284 | +ax.plot(ts, -rs[1] + rs[2]) |
| 285 | +ax.set_ylabel(r'$F_f$ [N]') |
| 286 | +ax.set_xlabel('Time [s]') |
| 287 | +ax.set_title('Friction Force with Slack Variables') |
| 288 | + |
| 289 | +plt.show() |
0 commit comments