-
Notifications
You must be signed in to change notification settings - Fork 1
/
captionator.py
executable file
·310 lines (261 loc) · 12.5 KB
/
captionator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
#! /usr/bin/env python
import time, logging
import atexit
from datetime import datetime
import threading, collections, queue, os, os.path
from collections import deque
import stt
import numpy as np
import pyaudio
import wave
import webrtcvad
from halo import Halo
from scipy import signal
from RPLCD.gpio import CharLCD
from RPi import GPIO
import os
from twilio.rest import Client
lcd = CharLCD(pin_rs=15, pin_rw=18, pin_e=16, pins_data=[21, 22, 23, 24],
numbering_mode=GPIO.BOARD,
cols=24, rows=2)
lcd.clear()
lcd.cursor_pos = (0, 0)
logging.basicConfig(level=20)
class Audio(object):
"""Streams raw audio from microphone. Data is received in a separate thread, and stored in a buffer, to be read from."""
FORMAT = pyaudio.paInt16
# Network/VAD rate-space
RATE_PROCESS = 16000
CHANNELS = 1
BLOCKS_PER_SECOND = 50
def __init__(self, callback=None, device=None, input_rate=RATE_PROCESS, file=None):
def proxy_callback(in_data, frame_count, time_info, status):
#pylint: disable=unused-argument
if self.chunk is not None:
in_data = self.wf.readframes(self.chunk)
callback(in_data)
return (None, pyaudio.paContinue)
if callback is None: callback = lambda in_data: self.buffer_queue.put(in_data)
self.buffer_queue = queue.Queue()
self.device = device
self.input_rate = input_rate
self.sample_rate = self.RATE_PROCESS
self.block_size = int(self.RATE_PROCESS / float(self.BLOCKS_PER_SECOND))
self.block_size_input = int(self.input_rate / float(self.BLOCKS_PER_SECOND))
self.pa = pyaudio.PyAudio()
kwargs = {
'format': self.FORMAT,
'channels': self.CHANNELS,
'rate': self.input_rate,
'input': True,
'frames_per_buffer': self.block_size_input,
'stream_callback': proxy_callback,
}
self.chunk = None
# if not default device
if self.device:
kwargs['input_device_index'] = self.device
elif file is not None:
self.chunk = 320
self.wf = wave.open(file, 'rb')
self.stream = self.pa.open(**kwargs)
self.stream.start_stream()
def resample(self, data, input_rate):
"""
Microphone may not support our native processing sampling rate, so
resample from input_rate to RATE_PROCESS here for webrtcvad and
stt
Args:
data (binary): Input audio stream
input_rate (int): Input audio rate to resample from
"""
data16 = np.fromstring(string=data, dtype=np.int16)
resample_size = int(len(data16) / self.input_rate * self.RATE_PROCESS)
resample = signal.resample(data16, resample_size)
resample16 = np.array(resample, dtype=np.int16)
return resample16.tostring()
def read_resampled(self):
"""Return a block of audio data resampled to 16000hz, blocking if necessary."""
return self.resample(data=self.buffer_queue.get(),
input_rate=self.input_rate)
def read(self):
"""Return a block of audio data, blocking if necessary."""
return self.buffer_queue.get()
def destroy(self):
self.stream.stop_stream()
self.stream.close()
self.pa.terminate()
frame_duration_ms = property(lambda self: 1000 * self.block_size // self.sample_rate)
def write_wav(self, filename, data):
logging.info("write wav %s", filename)
wf = wave.open(filename, 'wb')
wf.setnchannels(self.CHANNELS)
# wf.setsampwidth(self.pa.get_sample_size(FORMAT))
assert self.FORMAT == pyaudio.paInt16
wf.setsampwidth(2)
wf.setframerate(self.sample_rate)
wf.writeframes(data)
wf.close()
class VADAudio(Audio):
"""Filter & segment audio with voice activity detection."""
def __init__(self, aggressiveness=3, device=None, input_rate=None, file=None):
super().__init__(device=device, input_rate=input_rate, file=file)
self.vad = webrtcvad.Vad(aggressiveness)
def frame_generator(self):
"""Generator that yields all audio frames from microphone."""
if self.input_rate == self.RATE_PROCESS:
while True:
yield self.read()
else:
while True:
yield self.read_resampled()
def vad_collector(self, padding_ms=300, ratio=0.75, frames=None):
"""Generator that yields series of consecutive audio frames comprising each utterence, separated by yielding a single None.
Determines voice activity by ratio of frames in padding_ms. Uses a buffer to include padding_ms prior to being triggered.
Example: (frame, ..., frame, None, frame, ..., frame, None, ...)
|---utterence---| |---utterence---|
"""
if frames is None: frames = self.frame_generator()
num_padding_frames = padding_ms // self.frame_duration_ms
ring_buffer = collections.deque(maxlen=num_padding_frames)
triggered = False
for frame in frames:
if len(frame) < 640:
return
is_speech = self.vad.is_speech(frame, self.sample_rate)
if not triggered:
ring_buffer.append((frame, is_speech))
num_voiced = len([f for f, speech in ring_buffer if speech])
if num_voiced > ratio * ring_buffer.maxlen:
triggered = True
for f, s in ring_buffer:
yield f
ring_buffer.clear()
else:
yield frame
ring_buffer.append((frame, is_speech))
num_unvoiced = len([f for f, speech in ring_buffer if not speech])
if num_unvoiced > ratio * ring_buffer.maxlen:
triggered = False
yield None
ring_buffer.clear()
def main(ARGS):
#activate twilio api for reminders
if ARGS.twilio:
try:
twilio_account_sid = os.environ['TWILIO_ACCOUNT_SID']
twilio_auth_token = os.environ['TWILIO_AUTH_TOKEN']
twilio_from_number = os.environ['TWILIO_FROM_NUMBER']
twilio_to_number = os.environ['TWILIO_TO_NUMBER']
client = Client(twilio_account_sid, twilio_auth_token)
twilio_error = False
except KeyError:
print("error: twilio environment variables not found, configure twilio.env as described at https://www.twilio.com/docs/usage/secure-credentials")
twilio_error = True
# Load STT model
if os.path.isdir(ARGS.model):
model_dir = ARGS.model
ARGS.model = os.path.join(model_dir, 'output_graph.pb')
ARGS.scorer = os.path.join(model_dir, ARGS.scorer)
print('Initializing model...')
logging.info("ARGS.model: %s", ARGS.model)
model = stt.Model(ARGS.model)
if ARGS.scorer:
logging.info("ARGS.scorer: %s", ARGS.scorer)
model.enableExternalScorer(ARGS.scorer)
# Start audio with VAD
vad_audio = VADAudio(aggressiveness=ARGS.vad_aggressiveness,
device=ARGS.device,
input_rate=ARGS.rate,
file=ARGS.file)
print("Listening (ctrl-C to exit)...")
frames = vad_audio.vad_collector()
twilio_max_message_segments = 3 #each message segment costs 0.75 cents to send
twilio_long_message_max = twilio_max_message_segments * 152 - 56 #up to 250 characters will use 2 sms segments plus the 53 character preface message
message_history = deque(maxlen=twilio_long_message_max)
lcd.write_string("Hello HackDavis 2022! CaptionCap listening...")
# Stream from microphone to STT using VAD
spinner = None
if not ARGS.nospinner:
spinner = Halo(spinner='line')
stream_context = model.createStream()
wav_data = bytearray()
current_length = 100 # overwrite welcome message with whatever is heard
for frame in frames:
if frame is not None:
if spinner: spinner.start()
logging.debug("streaming frame")
stream_context.feedAudioContent(np.frombuffer(frame, np.int16))
if ARGS.savewav: wav_data.extend(frame)
else:
if spinner: spinner.stop()
logging.debug("end utterence")
if ARGS.savewav:
vad_audio.write_wav(os.path.join(ARGS.savewav, datetime.now().strftime("savewav_%Y-%m-%d_%H-%M-%S_%f.wav")), wav_data)
wav_data = bytearray()
text = stream_context.finishStream()
print("Recognized: %s" % text)
if(ARGS.twilio and text.startswith('remind me')):
text=text[10:]
if(twilio_error):
print("error, twilio disbled, configure env")
print("error: twilio environment variables not found, configure twilio.env as described at https://www.twilio.com/docs/usage/secure-credentials")
text='twilio env error'
else:
print("sending twilio reminder: %s" % text)
message = client.messages.create(to=twilio_to_number, from_=twilio_from_number, body="reminder from capcap: "+text)
elif(ARGS.twilio and (text.startswith('archive') or text.startswith('archie'))):
text=text[7:]
if(twilio_error):
print("error, twilio disbled, configure env")
print("error: twilio environment variables not found, configure twilio.env as described at https://www.twilio.com/docs/usage/secure-credentials")
text='twilio env error'
else:
print("sending twilio archive %s" % message_history)
message = client.messages.create(to=twilio_to_number, from_=twilio_from_number, body="archive from capcap: "+''.join(message_history))
if(len(text)>16 or (len(text)> 0 and (len(text)+current_length)) > 35):
lcd.clear()
message_history.extend(text)
lcd.write_string("%s" % text)
current_length = len(text)
elif(len(text)>0):
current_length += len(text) + 2
if current_length>0:
lcd.write_string(" ")
message_history.extend(" ")
lcd.write_string("%s" % text)
message_history.extend(text)
if ARGS.keyboard:
from pyautogui import typewrite
typewrite(text)
stream_context = model.createStream()
def cleanGPIO():
GPIO.cleanup()
atexit.register(cleanGPIO)
if __name__ == '__main__':
DEFAULT_SAMPLE_RATE = 16000
import argparse
parser = argparse.ArgumentParser(description="Stream from microphone to STT using VAD")
parser.add_argument('-v', '--vad_aggressiveness', type=int, default=3,
help="Set aggressiveness of VAD: an integer between 0 and 3, 0 being the least aggressive about filtering out non-speech, 3 the most aggressive. Default: 3")
parser.add_argument('--nospinner', action='store_true',
help="Disable spinner")
parser.add_argument('-w', '--savewav',
help="Save .wav files of utterences to given directory")
parser.add_argument('-f', '--file',
help="Read from .wav file instead of microphone")
parser.add_argument('-m', '--model', required=True,
help="Path to the model (protocol buffer binary file, or entire directory containing all standard-named files for model)")
parser.add_argument('-s', '--scorer',
help="Path to the external scorer file.")
parser.add_argument('-d', '--device', type=int, default=None,
help="Device input index (Int) as listed by pyaudio.PyAudio.get_device_info_by_index(). If not provided, falls back to PyAudio.get_default_device().")
parser.add_argument('-r', '--rate', type=int, default=DEFAULT_SAMPLE_RATE,
help=f"Input device sample rate. Default: {DEFAULT_SAMPLE_RATE}. Your device may require 44100.")
parser.add_argument('-k', '--keyboard', action='store_true',
help="Type output through system keyboard")
parser.add_argument('-t', '--twilio', action='store_true',
help="Enable reminders with twilio")
ARGS = parser.parse_args()
if ARGS.savewav: os.makedirs(ARGS.savewav, exist_ok=True)
main(ARGS)