We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
1、前期模型训练按照下面的项目方式进行:
https://aistudio.baidu.com/projectdetail/3429765?channelType=0&channel=0
2、通过PaddleOCR导出模型
python tools/export_model.py -c ./configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_student.yml -o Global.pretrained_model=./output/dianbiao_ch_PP-OCR_V3_det/best_accuracy Global.save_inference_dir=./inference/det_db
3、模型转换成serving可以识别的
python -m paddle_serving_client.convert --dirname ./det_db/ --model_filename inference.pdmodel --params_filename inference.pdiparams --serving_server ./ppocr_det_v3_serving/ --serving_client ./ppocr_det_v3_client/
4、启动模型Serving服务
python3 -m paddle_serving_server.serve --model /opt/ammeter_identify_mode/ppocr_det_v3_serving/ --port 9812
5、配置文件serving_client_conf.prototxt
` feed_var {
name: "x" alias_name: "x" is_lod_tensor: false feed_type: 1 shape: 3 } fetch_var { name: "sigmoid_0.tmp_0" alias_name: "sigmoid_0.tmp_0" is_lod_tensor: false fetch_type: 1 shape: 1 }`
6、客户端调用代码:
` from paddle_serving_app.reader import *
from paddle_serving_client import Client import cv2, json, datetime, os,numpy as np import numpy as np
parent_directory = os.path.dirname(os.path.abspath(file))
client = Client() #client.load_client_config(os.path.join(parent_directory, 'serving_client_conf.prototxt')) client.load_client_config('./serving_det_client_conf.prototxt') client.connect(['****:9812'])
preprocess = Sequential([ File2Image(), BGR2RGB(), Resize( (960, 960), interpolation=cv2.INTER_LANCZOS4), Div(255.0),Transpose((2, 0, 1)) ])
im = preprocess('./P23030907100210.jpg')
fetch_map = client.predict( feed={ "x": im, }, fetch=["sigmoid_0.tmp_0"], batch=False)
detections = fetch_map["sigmoid_0.tmp_0"]`
输出:
print(fetch_map) {'sigmoid_0.tmp_0': array([[[[6.7720975e-08, 1.3140065e-07, 1.9094442e-08, ..., 2.3576363e-09, 7.7910184e-10, 4.4165565e-09], [6.3383972e-08, 1.4166790e-07, 3.6551061e-08, ..., 4.6193835e-09, 1.3099265e-09, 4.5741602e-09], [2.5273311e-08, 1.4597879e-07, 3.7196685e-08, ..., 6.0767689e-09, 7.5343232e-10, 1.7367194e-08], ..., [4.4501288e-08, 3.6136807e-08, 7.8183229e-09, ..., 5.6374336e-08, 1.7245652e-08, 2.9781738e-08], [1.5184209e-08, 7.0195000e-08, 1.4452498e-08, ..., 5.4933416e-08, 9.6213251e-09, 1.3786045e-07], [7.2296395e-08, 3.9937358e-08, 2.8997006e-08, ..., 1.5954635e-07, 4.4072682e-08, 2.0925140e-07]]]], dtype=float32)}
我疑问的是这个结果是否正确?这个检测模型为什么没有告诉我检测的四点坐标?
The text was updated successfully, but these errors were encountered:
Message that will be displayed on users' first issue
Sorry, something went wrong.
你fetch的不是最终的输出,看着是这个输出还没有解码成最后的四点坐标格式,确认一下你的模型是完整导出的么
No branches or pull requests
1、前期模型训练按照下面的项目方式进行:
https://aistudio.baidu.com/projectdetail/3429765?channelType=0&channel=0
2、通过PaddleOCR导出模型
python tools/export_model.py -c ./configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_student.yml -o Global.pretrained_model=./output/dianbiao_ch_PP-OCR_V3_det/best_accuracy Global.save_inference_dir=./inference/det_db
3、模型转换成serving可以识别的
4、启动模型Serving服务
5、配置文件serving_client_conf.prototxt
` feed_var {
name: "x"
alias_name: "x"
is_lod_tensor: false
feed_type: 1
shape: 3
}
fetch_var {
name: "sigmoid_0.tmp_0"
alias_name: "sigmoid_0.tmp_0"
is_lod_tensor: false
fetch_type: 1
shape: 1
}`
6、客户端调用代码:
` from paddle_serving_app.reader import *
from paddle_serving_client import Client
import cv2, json, datetime, os,numpy as np
import numpy as np
parent_directory = os.path.dirname(os.path.abspath(file))
client = Client()
#client.load_client_config(os.path.join(parent_directory, 'serving_client_conf.prototxt'))
client.load_client_config('./serving_det_client_conf.prototxt')
client.connect(['****:9812'])
preprocess = Sequential([
File2Image(), BGR2RGB(),
Resize(
(960, 960), interpolation=cv2.INTER_LANCZOS4), Div(255.0),Transpose((2, 0, 1))
])
im = preprocess('./P23030907100210.jpg')
fetch_map = client.predict(
feed={
"x": im,
},
fetch=["sigmoid_0.tmp_0"],
batch=False)
detections = fetch_map["sigmoid_0.tmp_0"]`
输出:
我疑问的是这个结果是否正确?这个检测模型为什么没有告诉我检测的四点坐标?
The text was updated successfully, but these errors were encountered: