-
Notifications
You must be signed in to change notification settings - Fork 817
/
mujoco_model.py
89 lines (69 loc) · 2.55 KB
/
mujoco_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import parl
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
# clamp bounds for Std of action_log
LOG_SIG_MAX = 2.0
LOG_SIG_MIN = -20.0
class MujocoModel(parl.Model):
def __init__(self, obs_dim, action_dim):
super(MujocoModel, self).__init__()
self.actor_model = Actor(obs_dim, action_dim)
self.critic_model = Critic(obs_dim, action_dim)
def policy(self, obs):
return self.actor_model(obs)
def value(self, obs, action):
return self.critic_model(obs, action)
def get_actor_params(self):
return self.actor_model.parameters()
def get_critic_params(self):
return self.critic_model.parameters()
class Actor(parl.Model):
def __init__(self, obs_dim, action_dim):
super(Actor, self).__init__()
self.l1 = nn.Linear(obs_dim, 256)
self.l2 = nn.Linear(256, 256)
self.mean_linear = nn.Linear(256, action_dim)
self.std_linear = nn.Linear(256, action_dim)
def forward(self, obs):
x = F.relu(self.l1(obs))
x = F.relu(self.l2(x))
act_mean = self.mean_linear(x)
act_std = self.std_linear(x)
act_log_std = paddle.clip(act_std, min=LOG_SIG_MIN, max=LOG_SIG_MAX)
return act_mean, act_log_std
class Critic(parl.Model):
def __init__(self, obs_dim, action_dim):
super(Critic, self).__init__()
# Q1 network
self.l1 = nn.Linear(obs_dim + action_dim, 256)
self.l2 = nn.Linear(256, 256)
self.l3 = nn.Linear(256, 1)
# Q2 network
self.l4 = nn.Linear(obs_dim + action_dim, 256)
self.l5 = nn.Linear(256, 256)
self.l6 = nn.Linear(256, 1)
def forward(self, obs, action):
x = paddle.concat([obs, action], 1)
# Q1
q1 = F.relu(self.l1(x))
q1 = F.relu(self.l2(q1))
q1 = self.l3(q1)
# Q2
q2 = F.relu(self.l4(x))
q2 = F.relu(self.l5(q2))
q2 = self.l6(q2)
return q1, q2