forked from XuelianCheng/LEAStereo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
199 lines (167 loc) · 7.49 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
from __future__ import print_function
import argparse
from math import log10
import sys
import shutil
import os
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.nn.functional as F
import skimage
import pdb
import numpy as np
from torch.autograd import Variable
from torch.utils.data import DataLoader
from time import time
from collections import OrderedDict
from retrain.LEAStereo import LEAStereo
from mypath import Path
from dataloaders import make_data_loader
from utils.multadds_count import count_parameters_in_MB, comp_multadds, comp_multadds_fw
from config_utils.train_args import obtain_train_args
opt = obtain_train_args()
print(opt)
cuda = opt.cuda
if cuda and not torch.cuda.is_available():
raise Exception("No GPU found, please run without --cuda")
torch.manual_seed(opt.seed)
if cuda:
torch.cuda.manual_seed(opt.seed)
print('===> Loading datasets')
kwargs = {'num_workers': opt.threads, 'pin_memory': True, 'drop_last':True}
training_data_loader, testing_data_loader = make_data_loader(opt, **kwargs)
print('===> Building model')
model = LEAStereo(opt)
## compute parameters
#print('Total number of model parameters : {}'.format(sum([p.data.nelement() for p in model.parameters()])))
#print('Number of Feature Net parameters: {}'.format(sum([p.data.nelement() for p in model.feature.parameters()])))
#print('Number of Matching Net parameters: {}'.format(sum([p.data.nelement() for p in model.matching.parameters()])))
print('Total Params = %.2fMB' % count_parameters_in_MB(model))
print('Feature Net Params = %.2fMB' % count_parameters_in_MB(model.feature))
print('Matching Net Params = %.2fMB' % count_parameters_in_MB(model.matching))
#mult_adds = comp_multadds(model, input_size=(3,opt.crop_height, opt.crop_width)) #(3,192, 192))
#print("compute_average_flops_cost = %.2fMB" % mult_adds)
if cuda:
model = torch.nn.DataParallel(model).cuda()
torch.backends.cudnn.benchmark = True
if opt.solver == 'adam':
optimizer = optim.Adam(model.parameters(), lr=opt.lr, betas=(0.9,0.999))
elif opt.solver == 'sgd':
optimizer = optim.SGD(model.parameters(), lr=opt.lr, momentum=0.9)
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=opt.milestones, gamma=0.5)
if opt.resume:
if os.path.isfile(opt.resume):
print("=> loading checkpoint '{}'".format(opt.resume))
checkpoint = torch.load(opt.resume)
model.load_state_dict(checkpoint['state_dict'], strict=True)
else:
print("=> no checkpoint found at '{}'".format(opt.resume))
def train(epoch):
epoch_loss = 0
epoch_error = 0
valid_iteration = 0
for iteration, batch in enumerate(training_data_loader):
input1, input2, target = Variable(batch[0], requires_grad=True), Variable(batch[1], requires_grad=True), (batch[2])
if cuda:
input1 = input1.cuda()
input2 = input2.cuda()
target = target.cuda()
target=torch.squeeze(target,1)
mask = target < opt.maxdisp
mask.detach_()
valid = target[mask].size()[0]
train_start_time = time()
if valid > 0:
model.train()
optimizer.zero_grad()
disp = model(input1,input2)
loss = F.smooth_l1_loss(disp[mask], target[mask], reduction='mean')
loss.backward()
optimizer.step()
error = torch.mean(torch.abs(disp[mask] - target[mask]))
train_end_time = time()
train_time = train_end_time - train_start_time
epoch_loss += loss.item()
valid_iteration += 1
epoch_error += error.item()
print("===> Epoch[{}]({}/{}): Loss: ({:.4f}), Error: ({:.4f}), Time: ({:.2f}s)".format(epoch, iteration, len(training_data_loader), loss.item(), error.item(), train_time))
sys.stdout.flush()
print("===> Epoch {} Complete: Avg. Loss: ({:.4f}), Avg. Error: ({:.4f})".format(epoch, epoch_loss / valid_iteration, epoch_error/valid_iteration))
def val():
epoch_error = 0
valid_iteration = 0
three_px_acc_all = 0
model.eval()
for iteration, batch in enumerate(testing_data_loader):
input1, input2, target = Variable(batch[0],requires_grad=False), Variable(batch[1], requires_grad=False), Variable(batch[2], requires_grad=False)
if cuda:
input1 = input1.cuda()
input2 = input2.cuda()
target = target.cuda()
target=torch.squeeze(target,1)
mask = target < opt.maxdisp
mask.detach_()
valid=target[mask].size()[0]
if valid>0:
with torch.no_grad():
disp = model(input1,input2)
error = torch.mean(torch.abs(disp[mask] - target[mask]))
valid_iteration += 1
epoch_error += error.item()
#computing 3-px error#
pred_disp = disp.cpu().detach()
true_disp = target.cpu().detach()
disp_true = true_disp
index = np.argwhere(true_disp<opt.maxdisp)
disp_true[index[0][:], index[1][:], index[2][:]] = np.abs(true_disp[index[0][:], index[1][:], index[2][:]]-pred_disp[index[0][:], index[1][:], index[2][:]])
correct = (disp_true[index[0][:], index[1][:], index[2][:]] < 1)|(disp_true[index[0][:], index[1][:], index[2][:]] < true_disp[index[0][:], index[1][:], index[2][:]]*0.05)
three_px_acc = 1-(float(torch.sum(correct))/float(len(index[0])))
three_px_acc_all += three_px_acc
print("===> Test({}/{}): Error: ({:.4f} {:.4f})".format(iteration, len(testing_data_loader), error.item(), three_px_acc))
sys.stdout.flush()
print("===> Test: Avg. Error: ({:.4f} {:.4f})".format(epoch_error/valid_iteration, three_px_acc_all/valid_iteration))
return three_px_acc_all/valid_iteration
def save_checkpoint(save_path, epoch,state, is_best):
filename = save_path + "epoch_{}.pth".format(epoch)
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, save_path + 'best.pth')
print("Checkpoint saved to {}".format(filename))
if __name__ == '__main__':
error=100
for epoch in range(1, opt.nEpochs + 1):
train(epoch)
is_best = False
loss=val()
if loss < error:
error=loss
is_best = True
if opt.dataset == 'sceneflow':
if epoch>=0:
save_checkpoint(opt.save_path, epoch,{
'epoch': epoch,
'state_dict': model.state_dict(),
'optimizer' : optimizer.state_dict(),
}, is_best)
else:
if epoch%100 == 0 and epoch >= 3000:
save_checkpoint(opt.save_path, epoch,{
'epoch': epoch,
'state_dict': model.state_dict(),
'optimizer' : optimizer.state_dict(),
}, is_best)
if is_best:
save_checkpoint(opt.save_path, epoch,{
'epoch': epoch,
'state_dict': model.state_dict(),
'optimizer' : optimizer.state_dict(),
}, is_best)
scheduler.step()
save_checkpoint(opt.save_path, opt.nEpochs,{
'epoch': opt.nEpochs,
'state_dict': model.state_dict(),
'optimizer' : optimizer.state_dict(),
}, is_best)