Skip to content

Commit b852bc8

Browse files
committed
index.html updated
1 parent b41edaa commit b852bc8

File tree

4 files changed

+48
-3
lines changed

4 files changed

+48
-3
lines changed

images/inference.png

338 KB
Loading

images/preliminary.png

127 KB
Loading

images/validation.png

259 KB
Loading

index.html

+48-3
Original file line numberDiff line numberDiff line change
@@ -91,6 +91,34 @@ <h2>Abstract</h2>
9191
</section>
9292
<br>
9393

94+
<section>
95+
<div class="container">
96+
<div class="row">
97+
<div class="col-12 text-center">
98+
<h2>Preliminaries</h2>
99+
<!-- <hr style="margin-top:0px"> -->
100+
</div>
101+
<br>
102+
<div class="col-12">
103+
<p class="text-left">
104+
<center>
105+
<img src="images/preliminary.png" style="width:75%; margin-bottom:20px;">
106+
</center>
107+
<!-- <h4>Mean-Shift</h4> -->
108+
<!-- We revisit the mean-shift and introduce contrastive mean-shift (CMS) learning for generalized category discovery. -->
109+
Mean-shift is a classic, powerful technique for mode seeking and clustering analysis. It assigns each data point a
110+
corresponding mode through iterative shifts by kernel-weighted aggregation of neighboring points. The set of data
111+
points that converge to the same mode defines the basin of attraction of that mode, and this naturally relates to
112+
clustering: the points in the same basin of attraction are associated with the same cluster.
113+
<br>
114+
</p>
115+
<br>
116+
117+
</div>
118+
</div>
119+
</section>
120+
<br>
121+
94122
<section>
95123
<div class="container">
96124
<div class="row">
@@ -101,16 +129,33 @@ <h2>Methods</h2>
101129
<br>
102130
<div class="col-12">
103131
<p class="text-left">
104-
<img src="images/overview.png" style="width:100%; margin-top:10px; margin-bottom:10px;"">
105-
<h4>Contrastive Mean-Shift learning</h4>
132+
<h4>Learning framework: Contrastive Mean-Shift learning (CMS)</h4>
133+
<center>
134+
<img src="images/overview.png" style="width:100%; margin-top:10px; margin-bottom:20px;">
135+
</center>
106136
<!-- We revisit the mean-shift and introduce contrastive mean-shift (CMS) learning for generalized category discovery. -->
107137
Given a collection of images, each initial image embedding $\boldsymbol{v}_i$ from an image encoder takes a single step of
108138
mean shift to be $\boldsymbol{z}_i$ by aggregating its $k$ nearest neighbors with a weight kernel $\varphi(\cdot)$. The
109139
encoder network is then updated by contrastive learning with the mean-shifted embeddings, which draws a mean-shifted embedding
110140
of image $x_{i}$ and that of its augmented image $x_{i}^{+}$ closer and pushes those of distinct images apart from each other.
111141
<br>
112142
<br>
113-
<h4>Iterative Mean-Shift at inference</h4>
143+
<br>
144+
<h4>Validation: Estimating the number of clusters</h4>
145+
<center>
146+
<img src="images/validation.png" style="width:80%; margin-top:10px; margin-bottom:20px;">
147+
</center>
148+
During training, we estimate the number of clusters K at the end of every epoch for a fairer and efficient validation. We apply
149+
agglomerative clustering on the validation set to obtain clustering results for different number of clusters. Among them, the
150+
highest clustering accuracy on the labeled images is recorded as the validation performance, and the corresponding number of
151+
clusters is determined as the estimated number of clusters.
152+
<br>
153+
<br>
154+
<br>
155+
<h4>Inference: Iterative Mean-Shift (IMS)</h4>
156+
<center>
157+
<img src="images/inference.png" style="width:80%; margin-top:10px; margin-bottom:20px;">
158+
</center>
114159
To improve the final clustering property of the embeddings, we perform multi-step mean shift on the embeddings before
115160
agglomerative clustering. Starting from the initial embeddings from the learned encoder, we update them to $t$-step
116161
mean-shifted embeddings until the clustering accuracy on the labeled data converges. The final cluster assignment is obtained

0 commit comments

Comments
 (0)