diff --git a/css/bootstrap-4.4.1.css b/css/bootstrap-4.4.1.css index 18fbb86..e5d90aa 100644 --- a/css/bootstrap-4.4.1.css +++ b/css/bootstrap-4.4.1.css @@ -5258,17 +5258,17 @@ a.badge-dark:focus, a.badge-dark.focus { } .jumbotron { - /* padding: 1rem 1rem; */ + padding: 4rem 2rem 4rem; margin-bottom: 1rem; background-color: #ebf0f1; /*#e9ecef;*/ border-radius: 0.3rem; } -@media (min-width: 576px) { +/* @media (min-width: 576px) { .jumbotron { padding: 4rem 2rem; } -} +} */ .jumbotron-fluid { padding-right: 0; diff --git a/index.html b/index.html index b5623f5..259b48b 100644 --- a/index.html +++ b/index.html @@ -91,18 +91,30 @@

Abstract


+ +
-

Preliminaries

+

Preliminary


- +
@@ -143,7 +155,7 @@

Learning framework: Contrastive Mean-Shift learning (CMS)


Validation: Estimating the number of clusters

- +
During training, we estimate the number of clusters K at the end of every epoch for a fairer and efficient validation. We apply agglomerative clustering on the validation set to obtain clustering results for different number of clusters. Among them, the @@ -154,7 +166,7 @@

Validation: Estimating the number of clusters


Inference: Iterative Mean-Shift (IMS)

- +
To improve the final clustering property of the embeddings, we perform multi-step mean shift on the embeddings before agglomerative clustering. Starting from the initial embeddings from the learned encoder, we update them to $t$-step