forked from lvgl/lv_micropython
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmachine_uart.c
607 lines (540 loc) · 22.3 KB
/
machine_uart.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013-2018 Damien P. George
* Copyright (c) 2021,2022 Renesas Electronics Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <string.h>
#include <stdarg.h>
#include "py/runtime.h"
#include "py/stream.h"
#include "py/mperrno.h"
#include "py/mphal.h"
#include "shared/runtime/interrupt_char.h"
#include "shared/runtime/mpirq.h"
#include "uart.h"
#include "irq.h"
#include "pendsv.h"
#define DEFAULT_UART_BAUDRATE (115200)
STATIC const char *_parity_name[] = {"None", "ODD", "EVEN"};
/// \moduleref pyb
/// \class UART - duplex serial communication bus
///
/// UART implements the standard UART/USART duplex serial communications protocol. At
/// the physical level it consists of 2 lines: RX and TX. The unit of communication
/// is a character (not to be confused with a string character) which can be 8 or 9
/// bits wide.
///
/// UART objects can be created and initialised using:
///
/// from pyb import UART
///
/// uart = UART(1, 9600) # init with given baudrate
/// uart.init(9600, bits=8, parity=None, stop=1) # init with given parameters
///
/// Bits can be 8 or 9. Parity can be None, 0 (even) or 1 (odd). Stop can be 1 or 2.
///
/// A UART object acts like a stream object and reading and writing is done
/// using the standard stream methods:
///
/// uart.read(10) # read 10 characters, returns a bytes object
/// uart.read() # read all available characters
/// uart.readline() # read a line
/// uart.readinto(buf) # read and store into the given buffer
/// uart.write('abc') # write the 3 characters
///
/// Individual characters can be read/written using:
///
/// uart.readchar() # read 1 character and returns it as an integer
/// uart.writechar(42) # write 1 character
///
/// To check if there is anything to be read, use:
///
/// uart.any() # returns True if any characters waiting
STATIC void machine_uart_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (!self->is_enabled) {
mp_printf(print, "UART(%u)", self->uart_id);
} else {
mp_printf(print, "UART(%u, baudrate=%u, bits=%u, parity=%s, stop=%u",
self->uart_id, self->baudrate, self->bits,
_parity_name[self->parity], self->stop);
mp_printf(print, ", tx=%q, rx=%q", self->tx->name, self->rx->name);
if (self->rts) {
mp_printf(print, ", rts=%q", self->rts->name);
}
if (self->cts) {
mp_printf(print, ", cts=%q", self->cts->name);
}
mp_printf(print, ", flow=%d, rxbuf=%d, timeout=%u, timeout_char=%u",
self->flow,
self->read_buf_len == 0 ? 0 : self->read_buf_len - 1, // -1 to adjust for usable length of buffer
self->timeout, self->timeout_char);
if (self->mp_irq_trigger != 0) {
mp_printf(print, ", irq=0x%x", self->mp_irq_trigger);
}
mp_print_str(print, ")");
}
}
/// \method init(baudrate, bits=8, parity=None, stop=1, *, timeout=1000, timeout_char=0, flow=0, read_buf_len=64)
///
/// Initialise the UART bus with the given parameters:
///
/// - `baudrate` is the clock rate.
/// - `bits` is the number of bits per byte, 7, 8 or 9.
/// - `parity` is the parity, `None`, 0 (even) or 1 (odd).
/// - `stop` is the number of stop bits, 1 or 2.
/// - `timeout` is the timeout in milliseconds to wait for the first character.
/// - `timeout_char` is the timeout in milliseconds to wait between characters.
/// - `flow` is RTS | CTS where RTS == 256, CTS == 512
/// - `read_buf_len` is the character length of the read buffer (0 to disable).
STATIC mp_obj_t machine_uart_init_helper(machine_uart_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_baudrate, MP_ARG_INT | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_bits, MP_ARG_INT, {.u_int = 8} },
{ MP_QSTR_parity, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
{ MP_QSTR_stop, MP_ARG_INT, {.u_int = 1} },
{ MP_QSTR_flow, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_timeout_char, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_rxbuf, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_read_buf_len, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 512} }, // legacy
};
// parse args
struct {
mp_arg_val_t baudrate, bits, parity, stop, flow, timeout, timeout_char, rxbuf, read_buf_len;
} args;
mp_arg_parse_all(n_args, pos_args, kw_args,
MP_ARRAY_SIZE(allowed_args), allowed_args, (mp_arg_val_t *)&args);
// baudrate
uint32_t baudrate = args.baudrate.u_int;
if (baudrate == 0) {
baudrate = DEFAULT_UART_BAUDRATE;
}
// parity
uint32_t bits = args.bits.u_int;
uint32_t parity;
if (args.parity.u_obj == mp_const_none) {
parity = UART_PARITY_NONE;
} else {
mp_int_t p = mp_obj_get_int(args.parity.u_obj);
parity = (p & 1) ? UART_PARITY_ODD : UART_PARITY_EVEN;
bits += 1; // STs convention has bits including parity
}
// number of bits
if (!((bits == 7) | (bits == 8) | (bits == 9))) {
mp_raise_ValueError(MP_ERROR_TEXT("unsupported combination of bits and parity"));
}
// stop bits
uint32_t stop;
switch (args.stop.u_int) {
case 1:
stop = UART_STOPBITS_1;
break;
default:
stop = UART_STOPBITS_2;
break;
}
// flow control
uint32_t flow = args.flow.u_int;
// Save attach_to_repl setting because uart_init will disable it.
bool attach_to_repl = self->attached_to_repl;
// uint32_t irq_state = disable_irq();
// init UART (if it fails, it's because the port doesn't exist)
if (!uart_init(self, baudrate, bits, parity, stop, flow)) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("UART(%d) doesn't exist"), self->uart_id);
}
// Restore attach_to_repl setting so UART still works if attached to dupterm.
uart_attach_to_repl(self, attach_to_repl);
// set timeout
self->timeout = args.timeout.u_int;
// set timeout_char
// make sure it is at least as long as a whole character (13 bits to be safe)
// minimum value is 2ms because sys-tick has a resolution of only 1ms
self->timeout_char = args.timeout_char.u_int;
uint32_t min_timeout_char = 13000 / baudrate + 2;
if (self->timeout_char < min_timeout_char) {
self->timeout_char = min_timeout_char;
}
if (self->is_static) {
// Static UARTs have fixed memory for the rxbuf and can't be reconfigured.
if (args.rxbuf.u_int >= 0) {
mp_raise_ValueError(MP_ERROR_TEXT("UART is static and rxbuf can't be changed"));
}
uart_set_rxbuf(self, self->read_buf_len, self->read_buf);
} else {
// setup the read buffer
m_del(byte, self->read_buf, self->read_buf_len << self->char_width);
if (args.rxbuf.u_int >= 0) {
// rxbuf overrides legacy read_buf_len
args.read_buf_len.u_int = args.rxbuf.u_int;
}
if (args.read_buf_len.u_int <= 0) {
// no read buffer
uart_set_rxbuf(self, 0, NULL);
} else {
// read buffer using interrupts
size_t len = args.read_buf_len.u_int + 1; // +1 to adjust for usable length of buffer
uint8_t *buf = m_new(byte, len << self->char_width);
uart_set_rxbuf(self, len, buf);
}
}
#if RA_TODO
// compute actual baudrate that was configured
uint32_t actual_baudrate = uart_get_baudrate(self);
// check we could set the baudrate within 5%
uint32_t baudrate_diff;
if (actual_baudrate > baudrate) {
baudrate_diff = actual_baudrate - baudrate;
} else {
baudrate_diff = baudrate - actual_baudrate;
}
if (20 * baudrate_diff > actual_baudrate) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("set baudrate %d is not within 5%% of desired value"), actual_baudrate);
}
#endif
// enable_irq(irq_state);
return mp_const_none;
}
/// \classmethod \constructor(bus, ...)
///
/// Construct a UART object on the given bus. `bus` can be 1-6, or 'XA', 'XB', 'YA', or 'YB'.
/// With no additional parameters, the UART object is created but not
/// initialised (it has the settings from the last initialisation of
/// the bus, if any). If extra arguments are given, the bus is initialised.
/// See `init` for parameters of initialisation.
///
/// The physical pins of the UART buses are:
///
/// - `UART(4)` is on `XA`: `(TX, RX) = (X1, X2) = (PA0, PA1)`
/// - `UART(1)` is on `XB`: `(TX, RX) = (X9, X10) = (PB6, PB7)`
/// - `UART(6)` is on `YA`: `(TX, RX) = (Y1, Y2) = (PC6, PC7)`
/// - `UART(3)` is on `YB`: `(TX, RX) = (Y9, Y10) = (PB10, PB11)`
/// - `UART(2)` is on: `(TX, RX) = (X3, X4) = (PA2, PA3)`
STATIC mp_obj_t machine_uart_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
// work out port
int uart_id = 0;
if (mp_obj_is_str(args[0])) {
const char *port = mp_obj_str_get_str(args[0]);
if (0) {
#ifdef MICROPY_HW_UART0_NAME
} else if (strcmp(port, MICROPY_HW_UART0_NAME) == 0) {
uart_id = HW_UART_0;
#endif
#ifdef MICROPY_HW_UART1_NAME
} else if (strcmp(port, MICROPY_HW_UART1_NAME) == 0) {
uart_id = HW_UART_1;
#endif
#ifdef MICROPY_HW_UART2_NAME
} else if (strcmp(port, MICROPY_HW_UART2_NAME) == 0) {
uart_id = HW_UART_2;
#endif
#ifdef MICROPY_HW_UART3_NAME
} else if (strcmp(port, MICROPY_HW_UART3_NAME) == 0) {
uart_id = HW_UART_3;
#endif
#ifdef MICROPY_HW_UART4_NAME
} else if (strcmp(port, MICROPY_HW_UART4_NAME) == 0) {
uart_id = HW_UART_4;
#endif
#ifdef MICROPY_HW_UART5_NAME
} else if (strcmp(port, MICROPY_HW_UART5_NAME) == 0) {
uart_id = HW_UART_5;
#endif
#ifdef MICROPY_HW_UART6_NAME
} else if (strcmp(port, MICROPY_HW_UART6_NAME) == 0) {
uart_id = HW_UART_6;
#endif
#ifdef MICROPY_HW_UART7_NAME
} else if (strcmp(port, MICROPY_HW_UART7_NAME) == 0) {
uart_id = HW_UART_7;
#endif
#ifdef MICROPY_HW_UART8_NAME
} else if (strcmp(port, MICROPY_HW_UART8_NAME) == 0) {
uart_id = HW_UART_8;
#endif
#ifdef MICROPY_HW_UART9_NAME
} else if (strcmp(port, MICROPY_HW_UART9_NAME) == 0) {
uart_id = HW_UART_9;
#endif
} else {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("UART(%s) doesn't exist"), port);
}
} else {
uart_id = mp_obj_get_int(args[0]);
if (!uart_exists(uart_id)) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("UART(%d) doesn't exist"), uart_id);
}
}
// check if the UART is reserved for system use or not
if (MICROPY_HW_UART_IS_RESERVED(uart_id)) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("UART(%d) is reserved"), uart_id);
}
machine_uart_obj_t *self;
if (MP_STATE_PORT(machine_uart_obj_all)[uart_id] == NULL) {
// create new UART object
self = m_new0(machine_uart_obj_t, 1);
self->base.type = &machine_uart_type;
self->uart_id = uart_id;
MP_STATE_PORT(machine_uart_obj_all)[uart_id] = self;
} else {
// reference existing UART object
self = MP_STATE_PORT(machine_uart_obj_all)[uart_id];
}
// start the peripheral
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
machine_uart_init_helper(self, n_args - 1, args + 1, &kw_args);
return MP_OBJ_FROM_PTR(self);
}
STATIC mp_obj_t machine_uart_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
return machine_uart_init_helper(MP_OBJ_TO_PTR(args[0]), n_args - 1, args + 1, kw_args);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(machine_uart_init_obj, 1, machine_uart_init);
/// \method deinit()
/// Turn off the UART bus.
STATIC mp_obj_t machine_uart_deinit(mp_obj_t self_in) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
uart_deinit(self);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_uart_deinit_obj, machine_uart_deinit);
/// \method any()
/// Return `True` if any characters waiting, else `False`.
STATIC mp_obj_t machine_uart_any(mp_obj_t self_in) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
return MP_OBJ_NEW_SMALL_INT(uart_rx_any(self));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_uart_any_obj, machine_uart_any);
/// \method writechar(char)
/// Write a single character on the bus. `char` is an integer to write.
/// Return value: `None`.
STATIC mp_obj_t machine_uart_writechar(mp_obj_t self_in, mp_obj_t char_in) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
// get the character to write (might be 9 bits)
uint16_t data = mp_obj_get_int(char_in);
// write the character
int errcode;
if (uart_tx_wait(self, self->timeout)) {
uart_tx_data(self, &data, 1, &errcode);
} else {
errcode = MP_ETIMEDOUT;
}
if (errcode != 0) {
mp_raise_OSError(errcode);
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(machine_uart_writechar_obj, machine_uart_writechar);
/// \method readchar()
/// Receive a single character on the bus.
/// Return value: The character read, as an integer. Returns -1 on timeout.
STATIC mp_obj_t machine_uart_readchar(mp_obj_t self_in) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (uart_rx_wait(self, self->timeout)) {
return MP_OBJ_NEW_SMALL_INT(uart_rx_char(self));
} else {
// return -1 on timeout
return MP_OBJ_NEW_SMALL_INT(-1);
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_uart_readchar_obj, machine_uart_readchar);
// uart.sendbreak()
STATIC mp_obj_t machine_uart_sendbreak(mp_obj_t self_in) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
ra_sci_tx_break((uint32_t)self->uart_id);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_uart_sendbreak_obj, machine_uart_sendbreak);
// \method uart.txdone()
// Return `True` if all characters have been sent.
STATIC mp_obj_t machine_uart_txdone(mp_obj_t self_in) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
return uart_tx_busy(self) ? mp_const_false : mp_const_true;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_uart_txdone_obj, machine_uart_txdone);
// irq(handler, trigger, hard)
STATIC mp_obj_t machine_uart_irq(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
mp_arg_val_t args[MP_IRQ_ARG_INIT_NUM_ARGS];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_IRQ_ARG_INIT_NUM_ARGS, mp_irq_init_args, args);
machine_uart_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
if (self->mp_irq_obj == NULL) {
self->mp_irq_trigger = 0;
self->mp_irq_obj = mp_irq_new(&uart_irq_methods, MP_OBJ_FROM_PTR(self));
}
if (n_args > 1 || kw_args->used != 0) {
// Check the handler
mp_obj_t handler = args[MP_IRQ_ARG_INIT_handler].u_obj;
if (handler != mp_const_none && !mp_obj_is_callable(handler)) {
mp_raise_ValueError(MP_ERROR_TEXT("handler must be None or callable"));
}
// Check the trigger
mp_uint_t trigger = args[MP_IRQ_ARG_INIT_trigger].u_int;
mp_uint_t not_supported = trigger & ~MP_UART_ALLOWED_FLAGS;
if (trigger != 0 && not_supported) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("trigger 0x%08x unsupported"), not_supported);
}
// Reconfigure user IRQs
uart_irq_config(self, false);
self->mp_irq_obj->handler = handler;
self->mp_irq_obj->ishard = args[MP_IRQ_ARG_INIT_hard].u_bool;
self->mp_irq_trigger = trigger;
uart_irq_config(self, true);
}
return MP_OBJ_FROM_PTR(self->mp_irq_obj);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(machine_uart_irq_obj, 1, machine_uart_irq);
STATIC const mp_rom_map_elem_t machine_uart_locals_dict_table[] = {
// instance methods
{ MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&machine_uart_init_obj) },
{ MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&machine_uart_deinit_obj) },
{ MP_ROM_QSTR(MP_QSTR_any), MP_ROM_PTR(&machine_uart_any_obj) },
{ MP_ROM_QSTR(MP_QSTR_txdone), MP_ROM_PTR(&machine_uart_txdone_obj) },
{ MP_ROM_QSTR(MP_QSTR_flush), MP_ROM_PTR(&mp_stream_flush_obj) },
/// \method read([nbytes])
{ MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&mp_stream_read_obj) },
/// \method readline()
{ MP_ROM_QSTR(MP_QSTR_readline), MP_ROM_PTR(&mp_stream_unbuffered_readline_obj)},
/// \method readinto(buf[, nbytes])
{ MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_stream_readinto_obj) },
/// \method write(buf)
{ MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&mp_stream_write_obj) },
{ MP_ROM_QSTR(MP_QSTR_irq), MP_ROM_PTR(&machine_uart_irq_obj) },
{ MP_ROM_QSTR(MP_QSTR_writechar), MP_ROM_PTR(&machine_uart_writechar_obj) },
{ MP_ROM_QSTR(MP_QSTR_readchar), MP_ROM_PTR(&machine_uart_readchar_obj) },
{ MP_ROM_QSTR(MP_QSTR_sendbreak), MP_ROM_PTR(&machine_uart_sendbreak_obj) },
// class constants
{ MP_ROM_QSTR(MP_QSTR_RTS), MP_ROM_INT(UART_HWCONTROL_RTS) },
{ MP_ROM_QSTR(MP_QSTR_CTS), MP_ROM_INT(UART_HWCONTROL_CTS) },
};
STATIC MP_DEFINE_CONST_DICT(machine_uart_locals_dict, machine_uart_locals_dict_table);
STATIC mp_uint_t machine_uart_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, int *errcode) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
byte *buf = buf_in;
// check that size is a multiple of character width
if (size & self->char_width) {
*errcode = MP_EIO;
return MP_STREAM_ERROR;
}
// convert byte size to char size
size >>= self->char_width;
// make sure we want at least 1 char
if (size == 0) {
return 0;
}
// wait for first char to become available
if (!uart_rx_wait(self, self->timeout)) {
// return EAGAIN error to indicate non-blocking (then read() method returns None)
*errcode = MP_EAGAIN;
return MP_STREAM_ERROR;
}
// read the data
byte *orig_buf = buf;
for (;;) {
int data = uart_rx_char(self);
if (self->char_width == CHAR_WIDTH_9BIT) {
*(uint16_t *)buf = data;
buf += 2;
} else {
*buf++ = data;
}
if (--size == 0 || !uart_rx_wait(self, self->timeout_char)) {
// return number of bytes read
return buf - orig_buf;
}
}
}
STATIC mp_uint_t machine_uart_write(mp_obj_t self_in, const void *buf_in, mp_uint_t size, int *errcode) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
const byte *buf = buf_in;
// check that size is a multiple of character width
if (size & self->char_width) {
*errcode = MP_EIO;
return MP_STREAM_ERROR;
}
// wait to be able to write the first character. EAGAIN causes write to return None
if (self->timeout != 0) {
if (!uart_tx_wait(self, self->timeout)) {
*errcode = MP_EAGAIN;
return MP_STREAM_ERROR;
}
}
// write the data
size_t num_tx = uart_tx_data(self, buf, size >> self->char_width, errcode);
if (*errcode == 0 || *errcode == MP_ETIMEDOUT) {
// return number of bytes written, even if there was a timeout
return num_tx << self->char_width;
} else {
return MP_STREAM_ERROR;
}
}
STATIC mp_uint_t machine_uart_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_uint_t ret;
if (request == MP_STREAM_POLL) {
uintptr_t flags = arg;
ret = 0;
if ((flags & MP_STREAM_POLL_RD) && uart_rx_any(self)) {
ret |= MP_STREAM_POLL_RD;
}
if ((flags & MP_STREAM_POLL_WR) && uart_tx_avail(self)) {
ret |= MP_STREAM_POLL_WR;
}
} else if (request == MP_STREAM_FLUSH) {
// The timeout is estimated using the buffer size and the baudrate.
// Take the worst case assumptions at 13 bit symbol size times 2.
uint32_t timeout = mp_hal_ticks_ms() +
(uint32_t)(uart_tx_txbuf(self)) * 13000ll * 2 / self->baudrate;
do {
if (!uart_tx_busy(self)) {
return 0;
}
MICROPY_EVENT_POLL_HOOK
} while (mp_hal_ticks_ms() < timeout);
*errcode = MP_ETIMEDOUT;
ret = MP_STREAM_ERROR;
} else {
*errcode = MP_EINVAL;
ret = MP_STREAM_ERROR;
}
return ret;
}
STATIC const mp_stream_p_t uart_stream_p = {
.read = machine_uart_read,
.write = machine_uart_write,
.ioctl = machine_uart_ioctl,
.is_text = false,
};
MP_DEFINE_CONST_OBJ_TYPE(
machine_uart_type,
MP_QSTR_UART,
MP_TYPE_FLAG_ITER_IS_STREAM,
make_new, machine_uart_make_new,
locals_dict, &machine_uart_locals_dict,
print, machine_uart_print,
protocol, &uart_stream_p
);
MP_REGISTER_ROOT_POINTER(struct _machine_uart_obj_t *machine_uart_obj_all[MICROPY_HW_MAX_UART + MICROPY_HW_MAX_LPUART]);