-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_finetuning.py
297 lines (244 loc) · 13.2 KB
/
run_finetuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import os
import wandb
import logging
import numpy as np
import pandas as pd
import tensorflow as tf
from cort.modeling import CortForSequenceClassification, CortForElaboratedSequenceClassification, CortForPretraining
from cort.optimization import create_optimizer
from utils import utils, formatting_utils, dataset_utils
from tensorflow.keras import metrics
from tensorflow.keras.utils import Progbar
from tensorflow_addons import metrics as metrics_tfa
formatting_utils.setup_formatter()
@tf.function
def train_one_step(model, optimizer, inputs, clip_norm=1.0):
with tf.GradientTape() as tape:
loss, cort_outputs = model(inputs, training=True)
grads = tape.gradient(loss, model.trainable_variables)
(gradients, _) = tf.clip_by_global_norm(grads, clip_norm=clip_norm)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
return loss, cort_outputs
@tf.function
def eval_one_step(model, inputs):
return model(inputs, training=False)
def create_scatter_representation_table(representations, labels):
representations = np.concatenate(representations, axis=0)
labels = np.concatenate(labels, axis=0)
labels = np.reshape(labels, (-1, 1))
embedding_size = representations.shape[1]
columns = ['labels'] + ['e{}'.format(i) for i in range(embedding_size)]
embeddings = np.concatenate([labels, representations], axis=-1)
df = pd.DataFrame(embeddings, columns=columns)
df['labels'] = df['labels'].astype(int).astype(str)
return df
def create_pretrained_replica(config, optimizer, ckpt_path):
if not config.keep_optimizer_state:
optimizer, _ = create_optimizer(config, 10000) # overriding the optimizer states
replica = CortForPretraining(config)
replica(replica.dummy_inputs)
checkpoint = tf.train.Checkpoint(step=tf.Variable(0), optimizer=optimizer, model=replica)
checkpoint.restore(ckpt_path) # unresolved optimizer variables warnings
return replica
def create_metric_map(config):
metric_map = dict()
metric_map['loss'] = metrics.Mean(name='loss')
metric_map['accuracy'] = metrics.CategoricalAccuracy(name='accuracy')
metric_map['recall'] = metrics.Recall(name='recall')
metric_map['precision'] = metrics.Precision(name='precision')
metric_map['micro_f1_score'] = metrics_tfa.F1Score(
name='micro_f1_score', num_classes=config.num_labels, average='micro'
)
metric_map['macro_f1_score'] = metrics_tfa.F1Score(
name='macro_f1_score', num_classes=config.num_labels, average='macro'
)
# Metrics for model without Pre-trained model
if config.repr_finetune:
metric_map['co_loss'] = metrics.Mean(name='co_loss')
metric_map['cce_loss'] = metrics.Mean(name='cce_loss')
# Metrics for model training from elaborated representation
if config.include_sections:
metric_map['section_accuracy'] = metrics.CategoricalAccuracy(name='section_accuracy')
metric_map['section_recall'] = metrics.Recall(name='section_recall')
metric_map['section_precision'] = metrics.Precision(name='section_precision')
metric_map['section_micro_f1_score'] = metrics_tfa.F1Score(
name='section_micro_f1_score', num_classes=config.num_sections, average='micro'
)
metric_map['section_macro_f1_score'] = metrics_tfa.F1Score(
name='section_macro_f1_score', num_classes=config.num_sections, average='macro'
)
metric_map['section_co_loss'] = metrics.Mean(name='section_co_loss')
metric_map['section_cce_loss'] = metrics.Mean(name='section_cce_loss')
return metric_map
def metric_fn(dicts, cort_outputs, config):
d = cort_outputs
confusion_keys = ['accuracy', 'recall', 'precision',
'micro_f1_score', 'macro_f1_score']
for key in confusion_keys:
dicts[key].update_state(
y_true=d['ohe_labels'],
y_pred=d['probs']
)
if config.repr_finetune:
dicts['co_loss'].update_state(values=d['co_loss'])
dicts['cce_loss'].update_state(values=d['cce_loss'])
if config.include_sections:
dicts['section_co_loss'].update_state(values=d['section_co_loss'])
dicts['section_cce_loss'].update_state(values=d['section_cce_loss'])
confusion_keys = ['section_' + key for key in confusion_keys]
for key in confusion_keys:
dicts[key].update_state(
y_true=d['section_ohe_labels'],
y_pred=d['section_probs']
)
def main():
config = utils.parse_arguments()
utils.restrict_gpus(config)
# Initialize W&B agent
random_id = utils.generate_random_id()
if not config.train_at_once and not config.pretraining_run_name:
raise ValueError('Pre-training run name must be provided when uses Pre-trained models')
elif not config.train_at_once and not config.pretraining_checkpoint_dir:
raise ValueError('Pre-training checkpoint dir path must be provided when uses Pre-trained models')
elif not config.train_at_once and config.pretraining_run_name and config.pretraining_checkpoint_dir:
pretrained_run_name = config.pretraining_run_name
if config.checkpoint_dir:
raise ValueError('Directory to checkpoint must be empty when uses Pre-trained models')
config.checkpoint_dir = config.pretraining_checkpoint_dir.format(run_name=pretrained_run_name)
run_name = 'FT-{}_P-{}_I-{}'.format(config.model_name, pretrained_run_name, utils.generate_random_id())
else:
run_name = 'FT-{}_P-None_I-{}'.format(config.model_name, utils.generate_random_id())
wandb.init(project='CoRT Fine-tuning', name=run_name)
# Restricting random seed after setting W&B agents
utils.set_random_seed(config.seed)
strategy = tf.distribute.MirroredStrategy()
if config.distribute:
logging.info('Distributed Training Enabled')
train_dataset, valid_dataset, steps_per_epoch, _ = dataset_utils.configure_tensorflow_dataset(
config, strategy, add_steps_per_epoch=True, add_class_weight=True
)
total_train_steps = config.epochs * steps_per_epoch
logging.info('Training steps_per_epoch: {}, total_train_steps: {}'.format(steps_per_epoch, total_train_steps))
with strategy.scope() if config.distribute else utils.empty_context_manager():
optimizer, learning_rate_fn = create_optimizer(config, total_train_steps)
if config.repr_finetune and config.include_sections:
logging.info('Fine-tuning Representation, Including Sections → Elaborated Representation')
model = CortForElaboratedSequenceClassification(
config,
num_sections=config.num_sections,
num_labels=config.num_labels
)
else:
logging.info('Excluding Sections → Label Representation')
model = CortForSequenceClassification(config, num_labels=config.num_labels)
# Freeze the Pre-trained CoRT encoder for 2-stage training
if not config.train_at_once:
model.cort.trainable = False
logging.info('Froze CoRT encoder layers')
checkpoint_id = wandb.run.id if wandb.run.id is not None else random_id
logging.info('Generated random ID is `{}`'.format(checkpoint_id))
checkpoint_dir = os.path.join('./finetuning-checkpoints', checkpoint_id)
checkpoint = tf.train.Checkpoint(model=model)
manager = tf.train.CheckpointManager(checkpoint, checkpoint_dir, max_to_keep=config.keep_checkpoint_max)
if config.restore_checkpoint and config.restore_checkpoint == 'latest' and not config.pretraining_run_name:
checkpoint.restore(manager.latest_checkpoint)
logging.info('Restored latest model checkpoint from {}'.format(config.checkpoint_dir))
elif config.restore_checkpoint and config.restore_checkpoint != 'latest' and not config.pretraining_run_name:
checkpoint.restore(config.restore_checkpoint)
logging.info('Restored specified model checkpoint from {}'.format(config.checkpoint_dir))
elif config.restore_checkpoint and config.pretraining_run_name:
title = '#### Restoring Pre-trained Models ####'
logging.info('#' * len(title))
logging.info(title)
if config.restore_checkpoint == 'latest':
checkpoint_path = tf.train.latest_checkpoint(config.checkpoint_dir)
else:
checkpoint_path = os.path.join(config.checkpoint_dir, config.restore_checkpoint)
pretrained_replica = create_pretrained_replica(config, optimizer, checkpoint_path)
model.cort.set_weights(pretrained_replica.cort.get_weights())
logging.info('Restored Pre-trained `{}` model from {}'.format(config.model_name, config.checkpoint_dir))
logging.info('#' * len(title))
else:
logging.info('Initializing from scratch')
metric_maps = create_metric_map(config)
compile_metric_names = ['accuracy', 'recall', 'precision', 'micro_f1_score', 'macro_f1_score']
if config.keep_optimizer_state:
# Reset optimizer state except required parameters
# The latest optimizer parameters help fast converging when Fine-tuning
optimizer.iterations.assign(0)
model.compile(
optimizer=optimizer, loss=model.loss_fn,
metrics=[metric_maps[name] for name in compile_metric_names]
)
logging.info('***** Running training *****')
logging.info(' Num examples = {}'.format(steps_per_epoch * config.batch_size))
logging.info(' Num epochs = {}'.format(config.epochs))
logging.info(' Batch size = {}'.format(config.batch_size))
logging.info(' Total training steps = {}'.format(total_train_steps))
num_steps = 0
for epoch in range(config.initial_epoch, config.epochs):
print('\nEpoch {}/{}'.format(epoch + 1, config.epochs))
progbar = Progbar(steps_per_epoch, stateful_metrics=[metric.name for metric in metric_maps.values()])
# Forward and Backprop
for step, inputs in enumerate(train_dataset.take(steps_per_epoch)):
loss, cort_outputs = train_one_step(model, optimizer, inputs)
# Update metrics with model outputs
metric_maps['loss'].update_state(values=loss)
metric_fn(metric_maps, cort_outputs, config)
progbar.update(step, values=[
(metric_name, float(metric.result().numpy())) for metric_name, metric in metric_maps.items()
])
# Reports metrics on W&B
wandb.log({
'loss': tf.reduce_mean(loss).numpy(),
'learning_rate': learning_rate_fn(optimizer.iterations)
}, step=num_steps)
wandb.log({
metric_name: metric.result().numpy() for metric_name, metric in metric_maps.items()
}, step=num_steps)
num_steps += 1
# Reset all metric states for evaluation
epoch_logs = {}
for metric_name, metric in metric_maps.items():
epoch_logs[metric_name] = float(metric.result().numpy())
metric.reset_state()
# Evaluation
representations = []
labels = []
section_representations = []
sections = []
for step, inputs in enumerate(valid_dataset):
loss, cort_outputs = eval_one_step(model, inputs)
# Update metrics with model outputs
metric_maps['loss'].update_state(values=loss)
metric_fn(metric_maps, cort_outputs, config)
if 'representation' in cort_outputs:
representations.append(cort_outputs['representation'].numpy())
labels.append(cort_outputs['labels'].numpy())
if 'section_representation' in cort_outputs:
section_representations.append(cort_outputs['section_representation'].numpy())
sections.append(cort_outputs['section_labels'].numpy())
wandb_logs = {}
for metric_name, metric in metric_maps.items():
value = float(metric.result().numpy())
epoch_logs['val_' + metric_name] = value
wandb_logs['val_' + metric_name] = value
metric.reset_state()
if len(representations) > 0:
wandb_logs['representations'] = create_scatter_representation_table(representations, labels)
if len(section_representations) > 0:
wandb_logs['section_representations'] = create_scatter_representation_table(
section_representations, sections
)
# Reports evaluation results on W&B
wandb.log(wandb_logs, step=num_steps)
progbar.update(
current=steps_per_epoch,
values=[(name, value) for name, value in epoch_logs.items()],
finalize=True
)
manager.save(checkpoint_number=epoch)
logging.info(' * Saved model checkpoint for epoch: {}'.format(epoch))
logging.info('Finishing all jobs')
if __name__ == '__main__':
main()